### DES OSCILLATIONS LIBRES (SEICHES)

#### CHAPITRE IV.

# LES SEICHES LONGITUDINALES GLOBALES DU LAC TANGANIKA.

Le lac Tanganika s'étend approximativement du 3° au 9° parallèle sud et du 29° au 31° méridien est. Sa longueur totale dépasse ainsi 650 km, sur une cinquantaine de km de largeur moyenne, et l'extrémité sud du lac se trouve 240 km plus à l'est que son extrémité nord.

L'altitude du lac est de 775 m; c'est le niveau moyen du lac au-dessus du niveau de la mer : on sait que ce niveau moyen a subi au cours des temps d'importantes fluctuations, entraînant des modifications considérables des rives du lac. Pour tout ce qui concerne ces fluctuations, nous renvoyons aux ouvrages de A. CARSON, E. DEVROEY, F. G. S. GILLMAN, M. G. HEINRICHS, R. SIEGER et L. STAPPERS (<sup>83</sup>). Sa profondeur maxima atteint 1.470 m (à quelques km de la côte ouest, à hauteur des monts Marungu), et sa profondeur moyenne est d'environ 800 m.

Malgré l'étendue énorme de cette masse d'eau (plus de 32.00 km<sup>2</sup> de superficie totale), on peut envisager la possibilité de seiches affectant la masse entière du lac, bien que les conditions de pression atmosphérique nécessaires à l'excitation directe de seiches globales ne puissent probablement être réalisées qu'exceptionnellement; aussi faudra-t-il, à première vue, plutôt s'attendre à observer des seiches longitudinales partielles. Néanmoins, il reste indispensable de rechercher par les calculs quelques-uns des modes d'oscillation propres globaux du lac : on a vu (pp. 76 sqq.) que pour déterminer si un lac composé apparemment de plusieurs bassins se comporte réellement comme tel, il faut examiner sa courbe d'impédance  $\Xi(v) = \zeta/u$  au voisinage des détroits et étranglements. Or, la construction de cette courbe exige précisément le calcul des modes normaux globaux; ce sera donc là l'objet du présent chapitre.

<sup>(83)</sup> CARSON, A., The Rise and Fall of Lake Tanganyika, Quart. Journ. Geolog. Soc., 48 (1892), p. 401; DEVROEY, E., Le problème de la Lukuga, Inst. Roy. Col. Belge Bruxelles, 1938, pp. 123-127; ID., A propos de la stabilisation du niveau du lac Tanganika, Bruxelles, Falk, 1949; GILLMAN, F. G. S., Hydrology of Lake Tanganyika, Geolog. Survey Dept., Dahr-es-Salam, 1931; HEINRICHS, M. G., Les fluctuations de niveau du lac Tanganika, Bull. Séances I.R.C.B., 7 (1936), pp. 366-385; SIEGER, R., The Rise and Fall of Lake Tanganyika, Quart. Journ. Geolog. Soc., 49 (1893), p. 579; STAPPERS, L., Sondages dans le lac Tanganika, Rev. Cong., 1913, pp. 116-118; ID., Recherches bathymétriques sur les lacs Moero et Tanganika, Ann. Biologie Lacustre, 1914, pp. 83-114.

## § 1. DONNÉES BATHYMÉTRIQUES ET GÉOGRAPHIQUES.

Les données relatives au lac Tanganika ont été recueillies au cours de l'exploration hydrobiologique du lac effectuée en 1946-1947 par un groupe de savants belges (<sup>84</sup>). La carte utilisée pour les calculs a été publiée par M. A. CAPART (<sup>85</sup>).

Elle comprend deux cartes complètes du lac, à l'échelle 1/500.000<sup>e</sup>, dont l'une donne les principales lignes isobathes (50, 100, 250, 500, 750, 1.000, 1.250 et 1.400 m) et l'autre les tracés et cotes des échosondages — ces deux cartes se complétant du reste l'une l'autre — et deux cartes partielles, représentant seulement l'extrémité nord du lac, à l'échelle de 1/200.000<sup>e</sup>, la première donnant à nouveau les isobathes, et la seconde les tracés et cotes des échosondages.

Tout comme pour le lac de Genève (cf. chapitre III), on a procédé ici à une légère « rectification » du contour du lac (4 % environ de la surface totale du lac ont ainsi été « rognés »). Quant à la baie de Burton, elle a été entièrement négligée ici, tant à cause de ses très faibles profondeur et étendue relatives, qu'à cause de sa situation géographique particulière (cf. pl. II ; les zones « rognées » sont hachurées).

Le lac a ensuite été divisé, dans le sens de la longueur, en 89 compartiments, numérotés de 1 à 89 en commençant par l'extrémité nord et en terminant par l'extrémité sud. Les résultats des mesures effectuées sur la carte se trouvent consignés dans la table suivante; les notations sont les mêmes que celles utilisées pour le lac de Genève (cf. p. 91).

| Section | $\Delta x$ | x     | $\mathbf{S}(x)$ | <i>b(x)</i> | $\sigma(v)$                     | β( <i>x</i> ) | $\tau(v)$                       | $\Delta v$ | v(x)  |
|---------|------------|-------|-----------------|-------------|---------------------------------|---------------|---------------------------------|------------|-------|
| nº      | km         | km    | $km^2$          | km          | 10 <sup>10</sup> m <sup>3</sup> | km            | 10 <sup>10</sup> m <sup>3</sup> | km²        | km²   |
|         |            |       |                 |             |                                 |               |                                 |            |       |
| 1       | 5,5        | 5,5   | 2,35            | 24          | 5,64                            | 20,73         | 4,87                            | 114        | 114   |
| 2       | 5          | 10,5  | 3,24            | 25          | 8,10                            | 25,60         | 8,29                            | 128        | 242   |
| 3       | 5          | 15,5  | 3,31            | 23          | 7,62                            | 23,80         | 7,88                            | 119        | 361   |
| - 4     | 5          | 20,5  | 3,42            | 23          | 7,87                            | 23,80         | 8,14                            | 119        | 480   |
| 5       | 5          | 25,5  | 3,68            | 21,5        | 7,91                            | 21,40         | 7,88                            | 107        | 587   |
| 6       | 5          | 30.5  | 4.25            | 21          | 8.92                            | 21.20         | 9.01                            | 106        | 693   |
| 7       | 5          | 35.5  | 4.95            | 24          | 11.87                           | 22.40         | 11.09                           | 112        | 805   |
| 8       | 5          | 40.5  | 5.45            | 26          | 14.18                           | 24.60         | 13.41                           | 123        | 928   |
| 9       | 5          | 45 5  | 5.21            | 28.5        | 14.86                           | 25.40         | 13.23                           | 127        | 1 055 |
| 10      | 5          | 50,5  | 5,68            | 27,5        | 15,61                           | 28,00         | 15,90                           | 140        | 1.195 |
|         | 10         | 60 5  | 7 99            | 24.5        | 99 77                           | 99 50         | 16 97                           | 995        | 1 420 |
| 11      | 10         | 74 5  | 8 17            | 36 5        | 20 84                           | 30,73         | 25 44                           | 228        | 1.420 |
| 12      | 11         | 76 5  | 6,17            | 99          | 10 61                           | 27 40         | 12 94                           | 127        | 1.756 |
| 15      | 0          | 10,5  | 4,02            | 22          | 10,01                           | 27,40         | 10,21                           | 100        | 1.050 |
| 14      | 0.5        | 04,5  | 5,00            | 24 5        | 10,21                           | 25,50         | 13,30                           | 100        | 2.000 |
| 15      | 9,5        | 94    | 0,04            | 51,5        | 21,04                           | 20,10         | 20,01                           | 240        | 2.001 |
| 16      | 9,5        | 103,5 | 13,25           | 35          | 46,37                           | 25,05         | 33,19                           | 238        | 2.569 |
| 17      | 9          | 112,5 | 21,01           | 39          | 81,95                           | 34,00         | 71,43                           | 306        | 2.875 |
| 18      | 9,5        | 122   | 23,73           | 50          | 118,6                           | 47,37         | 112,41                          | 450        | 3.325 |
| 19      | 10         | 132   | 43,13           | 49          | 211,3                           | 51,90         | 223,84                          | 519        | 3.844 |
| 20      | 10         | 142   | 54,51           | 57,5        | 313,4                           | 64,50         | 351,59                          | 645        | 4.489 |
|         |            |       |                 |             |                                 |               |                                 |            |       |

(<sup>84</sup>) Cf. LELOUP, E., Exploration hydrobiologique du lac Tanganika, vol. II, fasc. 1, Bruxelles, Institut royal des Sciences naturelles de Belgique, 1949.
 (<sup>85</sup>) CAPART, A., *ibid.*, vol. II, fasc. 2.







Erratum. — Au lieu de : Échelle 1/1.000.000, lire : Échelle 1/1.250.000.

DES OSCILLATIONS LIBRES (SEICHES)

| . <u> </u> |            |       |                 |             | 1                               |       |                                 | <u>·</u>        |                 |
|------------|------------|-------|-----------------|-------------|---------------------------------|-------|---------------------------------|-----------------|-----------------|
| Section    | $\Delta x$ | x     | $\mathbf{S}(x)$ | <i>b(x)</i> | σ(v)                            | β(x)  | $\tau(v)$                       | $\Delta v$      | v(x)            |
| nº         | km         | km    | $km^2$          | km          | 10 <sup>10</sup> m <sup>3</sup> | km    | 10 <sup>10</sup> m <sup>3</sup> | km <sup>2</sup> | km <sup>2</sup> |
|            | <u> </u>   |       |                 |             |                                 | <br>  |                                 |                 | <u></u>         |
| 21         | 13         | 155   | 61.67           | 55          | 339.2                           | 43.23 | 266.60                          | 562             | 5.051           |
| 22         | 10         | 165   | 64.9            | 55          | 357.2                           | 57.70 | 374.47                          | 577             | 5 628           |
| 23         | 11.5       | 176 5 | 65 1            | 55.5        | 361 5                           | 42 00 | 273 42                          | 483             | 6 111           |
| 24         | 11.5       | 188   | 60.3            | 51          | 307.8                           | 41 13 | 248 01                          | 473             | 6 584           |
| 25         | 12.5       | 200.5 | 62.9            | 61          | 383.6                           | 47 44 | 298 40                          | 593             | 7 177           |
| ~0         | 1~,0       | 200,0 | 0~,0            | 01          | 000,0                           |       | 200,40                          | 000             |                 |
| 26         | 11.5       | 212   | 59.5            | 65          | 386.7                           | 50.26 | 299.05                          | 578             | 7 755           |
| 27         | 10         | 222   | 53.4            | 64.5        | 344.4                           | 57.10 | 304.91                          | 571             | 8 326           |
| 28         | 9.5        | 231.5 | 38.5            | 63          | 242.5                           | 55.58 | 213.98                          | 528             | 8 854           |
| 29         | 10         | 241.5 | 30.0            | 57          | 171.0                           | 50,90 | 152.70                          | 509             | 9 363           |
| 30         | 9.5        | 251   | 37.2            | 55.5        | 206.5                           | 50.95 | 189 53                          | 484             | 9.847           |
| 00         | 0,0        | ~01   | 0.,~            | 00,0        | 200,0                           | 00,00 | 100,00                          | 101             | 5.047           |
| 31         | 10         | 261   | 31.6            | 51          | 161.2                           | 47.40 | 149.78                          | 474             | 10 321          |
| 32         | 4          | 265   | 30.6            | 45          | 137 7                           | 60,00 | 183 60                          | 240             | 10.521          |
| 33         | 4 5        | 269 5 | 28 7            | 50          | 143 5                           | 52 89 | 151 79                          | 238             | 10.301          |
| 34         | 4.5        | 203,5 | 33.0            | 59.5        | 201 7                           | 64,00 | 216 96                          | 200             | 10.799          |
| 25         | 4,0        | 274   | 34.0            | 65          | 201,1                           | 75 50 | 256 70                          | 302             | 11.007          |
| - 55       | 4          | 210   | 04,0            |             | 221,0                           | 10,00 | 230,10                          | 502             | 11.569          |
| 36         | 75         | 985 5 | 24.4            | 66 5        | 206 8                           | 7/ 03 | 933 03                          | 569             | 44 054          |
|            | 7,5        | 200,0 | 96 6            | 69.5        | 184 0                           | 79 67 | 200,00                          | 500             | 11.951          |
| 51         | 1,0        | 295   | 20,0            | 09,0        | 104,9                           | 78,07 | 209,20                          | 290             | 12.541          |
| 38         | 5          | 298   | 23,9            | 70          | 107,5                           | 70,40 | 108,20                          | 552             | 12.893          |
| 39         | 5          | 303   | 19,9            |             | 141,3                           | 69,60 | 138,50                          | 348             | 13.241          |
| 40         | 1,5        | 304,5 | 18,2            | 67,5        | 122,8                           | 69,33 | 126,18                          | 104             | 13.345          |
|            | 25         | 200   | 91.77           | 60          | 170 4                           | 69.44 | 455 06                          | 994             | 12 500          |
| 41         | 5,5        | 308   | 24,1            | 09          | 170,4                           | 65,14 | 155,96                          | 221             | 13.566          |
| 42         | 5          | 313   | 22,5            | 71,5        | 160,9                           | 69,00 | 155,25                          | 345             | 13.911          |
| 43         | 5          | 318   | 22,7            | 50          | 113,5                           | 58,80 | 133,48                          | 294             | 14.205          |
| 44         | 5          | 323   | 22,9            | 45          | 103,0                           | 54,00 | 123,66                          | 270             | 14.475          |
| 45         | 5,5        | 328,5 | 21,2            | 43,5        | 92,3                            | 44,00 | 93,28                           | 242             | 14.717          |
| 10         | -          | 000 5 | 00 F            | 10          | 0.0 4                           | 17 00 | 0.6.05                          | 0.05            |                 |
| 46         | 5          | 333,5 | 20,5            | 42          | 86,1                            | 47,00 | 96,35                           | 235             | 14.952          |
| 47         | 5          | 338,5 | 20,4            | 39          | 79,6                            | 42,20 | 86,09                           | 211             | 15.163          |
| 48         | 2          | 345,5 | 20,9            | 41          | 85,8                            | 37,14 | 77,62                           | 260             | 15.423          |
| 49         | 7          | 352,5 | 27,1            | 48          | 130,2                           | 44,71 | 121,16                          | 313             | 15.736          |
| 50         | 10         | 362,5 | 29,4            | 54          | 158,8                           | 48,00 | 141,12                          | 480             | 16.216          |
|            |            | 070   |                 | ~ .         | 150.0                           |       |                                 |                 |                 |
| 51         | 9,5        | 372   | 31,0            | 51          | 158,0                           | 49,58 | 153,70                          | 471             | 16.687          |
| 52         |            | 377   | 32,9            | 65          | 213,8                           | 53,80 | 177,00                          | 269             | 16.956          |
| 53         | 5          | 382   | 34,3            | 73          | 250,4                           | 64,40 | 220,89                          | 322             | 17.278          |
| 54         | 5          | 387   | 34,8            | 76          | 264,5                           | 68,00 | 236,64                          | 340             | 17.618          |
| 55         | 5,5        | 392,5 | 36,1            | 76,5        | 276,2                           | 66,55 | 240,25                          | 366             | 17.984          |
|            |            | 007 5 |                 | <b>P</b> O  | 051.0                           | CL 00 | ar                              | 0.00            | 10.000          |
| 56         | 5          | 397,5 | 34,8            |             | 254,0                           | 61,80 | 215,06                          | 309             | 18.293          |
| 57         | 5,5        | 403   | 35,0            | 72          | 252,0                           | 52,36 | 183,26                          | 288             | 18.581          |
| 58         | 5          | 408   | 33,5            | 71,5        | 239,5                           | 51,40 | 172,19                          | 257             | 18.838          |
| 59         | 9,5        | 417,5 | 30,8            | 72,5        | 223,3                           | 57,58 | 177,35                          | 547             | 19.385          |
| 60         | 9,5        | 427   | 33,3            | 72          | 239,8                           | 68,42 | 227,84                          | 650             | 20.035          |
|            |            |       |                 |             |                                 |       |                                 |                 |                 |
| 61         | 9,5        | 436,5 | 28,9            | 67          | 193,6                           | 65,58 | 189,53                          | 623             | 20.658          |
| 62         | 9          | 445,5 | 33,3            | 62          | 206,5                           | 66,44 | 221,25                          | 598             | 21.256          |
| 63         | 10         | 455,5 | 43,6            | 61          | 266,0                           | 58,60 | 255,50                          | 586             | 21.842          |
| 64         | 10         | 465,5 | 48,1            | 59          | 283,8                           | 59,80 | 287,64                          | 598             | 22.440          |
| 65         | 10         | 475,5 | 51,4            | 47          | 241,6                           | 51,50 | 264,71                          | 515             | 22.955          |
|            |            |       |                 |             |                                 |       |                                 |                 |                 |
| 66         | 10         | 485,5 | 53,5            | 44          | 235,4                           | 45,90 | 245,56                          | 459             | 23.414          |
|            |            |       |                 |             |                                 |       |                                 |                 |                 |

-

111

€.



F. SERVAIS. — ÉTUDE ТНЕОRІQUE

.

Voici les calculs relatifs au dernier essai :

| $\lambda_1 =$ | = 1,71467 | $\times 10^{-40}$ | cm-1. |
|---------------|-----------|-------------------|-------|

|                           |            |                    | 1                  |          |
|---------------------------|------------|--------------------|--------------------|----------|
| Section<br>n <sup>o</sup> | ζ          | u                  | ξ                  | Δζ       |
|                           | cm         | 107 m <sup>3</sup> | 10 <sup>3</sup> cm | cm       |
|                           |            |                    |                    |          |
| 1                         | 1.000,0000 | 114,0000           | 48,510             | - 4,5748 |
| 2                         | 995,4252   | 241,4144           | 74,511             | - 6,3881 |
| 3                         | 989,0371   | 359,1098           | 108,492            | - 9,3014 |
| 4                         | 979,7357   | 475,6983           | 139,093            | -11,9249 |
| 5                         | 967,8108   | 579,2541           | 157,406            | -13,4950 |
| 6                         | 954,3158   | 680,4116           | 169.097            | -13.7257 |
| 7                         | 940,5901   | 785,7577           | 158,739            | -13,6092 |
| 8                         | 926,9809   | 899.7763           | 165.097            | -14,1543 |
| 9                         | 912.8266   | 1.015.7053         | 194.953            | -16,7140 |
| 10                        | 896,1126   | 1.141,1611         | 200,909            | -17,2246 |
|                           |            |                    |                    |          |
| 11                        | 878,8880   | 1.338,9109         | 185,188            | -31,7536 |
| 12                        | 847,1344   | 1.625,2423         | 198,928            | -37,5205 |
| 13                        | 809,6139   | 1.736,1594         | 360,199            | -30,8811 |
| 14                        | 778,7328   | 1.882,5612         | 332,608            | -45,6250 |
| 15                        | 733,1078   | 2.064,3719         | 233,526            | -38,0399 |
| 16                        | 695.0679   | 2.229.7981         | 168,287            | -27,4129 |
| 17                        | 667,6550   | 2.434.1005         | 115.854            | -17.8786 |
| 18                        | 649.7764   | 2.726.4999         | 114.897            | -18,7160 |
| 19                        | 631.0604   | 3.054.0202         | 70,810             | -12,1416 |
| 20                        | 618,9188   | 3.453,2228         | 63,350             | -10,8624 |
| 94                        | 608 0564   | 2 704 0505         | 64 596             | 40 7460  |
| 21                        | 504,0004   | 5.194,0000         | 01,550             | -15,7108 |
| 22                        | 594,5590   | 4.157,8844         | 05,158             | -10,9324 |
| 23                        | 570 0909   | 4.419,0701         | 07,890             | -15,5670 |
| 24                        | 554 6858   | 4.005,2051         | 70 781             | -17,0008 |
| 20                        | 004,0000   | 5.010,2104         | 15,101             | 11,0390  |
| 26                        | 537,5860   | 5.328,9431         | 89,562             | -17,6605 |
| 27                        | 519,9255   | 5.625,8206         | 105,352            | -18,0644 |
| 28                        | 501,8611   | 5.890,8033         | 153,008            | -24,9242 |
| 29                        | 476,9369   | 6.133,5642         | 204,452            | -35,0568 |
| 30                        | 441,8801   | 6.347,4342         | 170,630            | -27,7945 |
| 31                        | 414 0856   | 6.543 7108         | 207 079            | -35 5072 |
| 32                        | 378 5784   | 6 634 5696         | 216,816            | -14 8707 |
| 33                        | 363,7077   | 6 721 1320         | 234, 186           | -18 0698 |
| 34                        | 345,6379   | 6.820.6757         | 201,200            | -15,5246 |
| 35                        | 330,1133   | 6.920,3699         | 203,540            | -13,9602 |
| 0.0                       | 040.550    | <b>N</b> 000 0.770 | 000,000            | 00.0700  |
| 36                        | 316,1531   | 7.098,0479         | 228,233            | -29,3508 |
| 37                        | 286,8023   | 7.267,2613         | 273,205            | -35,1342 |
| 38<br>20                  | 221,0081   | 7.333,8485         | 307,776            |          |
| 5 <del>9</del><br>40      | 220,2814   | 1.404,2404         | 010,080<br>400 570 | -32,0283 |
| 40                        | 193,2031   | 1.404,3441         | 409,579            | -10,5344 |
| 41                        | 182,7187   | 7.494,7255         | 303,430            | -18,2099 |
| 42                        | 164,5088   | 7.551,4810         | 335,621            | -28,7740 |
| 43                        | 135,7348   | 7.591,3870         | 334,422            | -28,6712 |
|                           |            |                    | 1                  |          |

# DES OSCILLATIONS LIBRES (SEICHES)

| Section  | ζ                                       | u                              | ξ                  | Δζ       |
|----------|-----------------------------------------|--------------------------------|--------------------|----------|
| nº       | em                                      | 10 <sup>7</sup> m <sup>3</sup> | 10 <sup>3</sup> cm | cm       |
|          |                                         |                                |                    |          |
| 44       | 107,0636                                | 7.620.2942                     | 332.764            | -28.5290 |
| 45       | 78,5346                                 | 7.639,2996                     | 360,344            | -33,9829 |
|          |                                         | ·                              | ,                  | ,        |
| 46       | 44,5517                                 | 7.649,7692                     | 373,159            | -31,9922 |
| 47       | 12,5595                                 | 7.652,4192                     | 375,119            | -32,1603 |
|          | Nœud                                    |                                |                    |          |
| 48       | - 19,6008                               | 7.647,3230                     | 365,901            | -43,9180 |
| 49       | - 63,5188                               | 7.627,4416                     | 281,455            | -33,7822 |
| 50       | - 97,3010                               | 7.580,7371                     | 257,848            | -44,2124 |
| 51       | -141,5134                               | 7.514.0843                     | 242,390            | -39,4838 |
| 52       | -180,9972                               | 7.465,3961                     | 226,912            | -19,4540 |
| 53       | -200,4512                               | 7.400,8508                     | 215,768            | -18,4985 |
| 54       | -218,9497                               | 7.326,4079                     | 210,529            | -18,0494 |
| 55       | -236,9991                               | 7.239,6662                     | 200,545            | -18,9128 |
|          |                                         |                                |                    |          |
| 56       | -255,9119                               | 7.160,5894                     | 205,764            | -17,6409 |
| 57       | -273,5528                               | 7.081,8062                     | 202,337            | -19,0818 |
| 58       | -292,6346                               | 7.006,5991                     | 209,152            | -17,9313 |
| 59       | -310,5659                               | 6.836,7196                     | 221,971            | -36,1577 |
| 60       | -346,7236                               | 6.611,3493                     | 198,539            | -32,3407 |
| 61       | -379.0643                               | 6.375.1922                     | 220.595            | -35.9335 |
| 62       | -414.9978                               | 6.127.0235                     | 183,995            | -28,3942 |
| 63       | -443,3920                               | 5.867,1958                     | 134,569            | -23,0741 |
| 64       | -466,4661                               | 5.588,2491                     | 116,180            | -19,9210 |
| 65       | -486,3871                               | 5.337,7597                     | 103,847            | -17,8063 |
|          |                                         |                                |                    |          |
| 66       | -504,1934                               | 5.106,3349                     | 95,446             | -16,3658 |
| 67       | -520,5592                               | 4.876,7683                     | 95,249             | -16,3321 |
| 68<br>60 | -536,8913                               | 4.624,9663                     | 83,333             | -14,2889 |
| 69<br>70 | -331,1802                               | 4.373,0769                     | 75,398             | -12,9283 |
| 70       | -304,1083                               | 4.101,1700                     | 71,201             | -11,5962 |
| 71       | -575.7067                               | 3.801.8091                     | 76,960             | -13,1961 |
| 72       | -588,9028                               | 3.506.1799                     | 83,480             | -13.5984 |
| 73       | -602,5012                               | 3.225,4143                     | 80,635             | -13,8262 |
| 74       | -616,3274                               | 2.950,5323                     | 97,057             | -16,6421 |
| 75       | -632,9695                               | 2.674,5576                     | 108,722            | -18,6422 |
| 76       | -651 6117                               | 9 278 7950                     | 103 499            | -17 7226 |
| 77       | -669 3453                               | 2.010,1209                     | 88 059             | -15 0999 |
| 78       | -684 4445                               | 1 916 6610                     | 77 285             | - 6 6259 |
| 79       | -691.0704                               | 1.745.9666                     | 77,945             | - 6,6825 |
| 80       | -697.7529                               | 1.552.6891                     | 61,129             | -5.7649  |
|          | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |                                | ,                  |          |
| 81       | -703,5178                               | 1.376,1061                     | 69,151             | - 5,9286 |
| 82       | -709,4464                               | 1.227,1224                     | 70,932             | - 6,0812 |
| 83       | -715,5276                               | 1.072,5684                     | 72,964             | - 6,2555 |
| 84       | -721,7831                               | 920,9939                       | 69,772             | - 5,9818 |
| 85       | -727,7649                               | 780,5353                       | 87,701             | - 7,5189 |
| 80<br>07 | -133,2838                               | b34,9491                       | 77,057             | - 6,6064 |
| ð/<br>00 | -141,8902                               | 398,9699                       | 64,101             | -10,9912 |
| 00<br>80 | -750 0429                               | 121,8083                       | 41,013             | - 1,0324 |
|          | 100,0100                                | - 0,0110                       |                    |          |

Le nœud se trouve sur une ligne passant un peu au nord de l'embouchure de la Lubugwe (côte est) et une dizaine de km au sud de l'embouchure de la Lubaya (côte ouest): cette ligne nodale partage la surface totale du lac en deux portions très sensiblement égales.

Afin de se rendre compte de la stabilité de la méthode, on a refait les mêmes calculs en n'utilisant que 45 divisions au lieu de 89, à savoir les divisions d'ordre pair seulement; les nouveaux  $\Delta x_{2i}^{-1}$  sont donc égaux à la somme des anciens  $\Delta x_{2i-1} + \Delta x_{2i}$  et il en est de même pour les nouveaux  $\Delta v_{2i}$ ; quant aux grandeurs S(x) et b(x), elles restent inchangées.

| Section   | ζ          | u                              | ξ                  | Δζ       |
|-----------|------------|--------------------------------|--------------------|----------|
|           | cm         | 10 <sup>7</sup> m <sup>3</sup> | 10 <sup>3</sup> cm | cm       |
| 2         | 1 000 0000 | 010,0000                       | <b></b>            |          |
| 2         | 1.000,0000 | 242,0000                       | 74,691             | -13,4474 |
| 4         | 986,5527   | 476,7995                       | 139,415            | -23,9051 |
| 6         | 962,6476   | 681,8434                       | 160,434            | -27,5091 |
| 8         | 935,1385   | 901,6009                       | 165,431            | -28,3660 |
| 10        | 906,7725   | 1.143,7092                     | 201,357            | -34,5261 |
| 12        | 872,2464   | 1.634,7839                     | 200,096            | -72,0507 |
| 14        | 800,1957   | 1.894,8475                     | 334,779            | -74,6245 |
| 16        | 725,5712   | 2.247,4751                     | 169,621            | -55,2745 |
| 18        | 670,2967   | 2.754,2194                     | 116,065            | -38,8076 |
| 20        | 631,4892   | 3.489,2728                     | 64,012             | -21,9519 |
| 22        | 609.5373   | 4,183,5358                     | 64.461             | -25,4217 |
| 24        | 584,1156   | 4.741.9503                     | 78.639             | -31,0132 |
| 26        | 553,1024   | 5.389.6332                     | 90,582             | -37,2764 |
| 28        | 515,8260   | 5.956.5260                     | 154.715            | -51,7306 |
| 30        | 464.0954   | 6.417.3727                     | 172,510            | -57,6806 |
|           | 101,0001   |                                | 112,010            | 01,0000  |
| 32        | 406,4148   | 6.699,4246                     | 218,935            | -52,5562 |
| <b>34</b> | 353,8586   | 6.885,5542                     | 203,114            | -31,3446 |
| 36        | 322,5140   | 7.164,2063                     | 230,360            | -45,4240 |
| 38        | 277,0900   | 7.425,2251                     | 310,679            | -66,5890 |
| 40        | 210,5010   | 7.520,3716                     | 413,207            | -46,0534 |
| 49        | 164 4476   | 7 613 4489                     | 338 376            | -49 3173 |
| 44        | 115 1303   | 7 678 3824                     | 335, 300           | -57 4929 |
| 46        | 57 6374    | 7 705 8754                     | 375 896            | -67 6764 |
| 10        | Nœud       | 1.100,0104                     | 010,000            | 01,0101  |
| 48        | - 10,0390  | 7,701,1470                     | 368,476            | -75,8178 |
| 50        | - 85,8568  | 7.633,0626                     | 259,628            | -75,6800 |
| 59        | -161 5369  | 7 549 5954                     | 998 975            | -56 7809 |
| 54        | -918 3170  | 7 368 0005                     | 220,010            | -36,3087 |
| 56        | -210,3110  | 7.00,3330                      | 211,155            | -30,3007 |
| 58        | -204,0201  | 7 038 0699                     | 200,014            | -37,29/0 |
| 50<br>60  | -220 6855  | 6 642 4207                     | 400 509            | -64 0059 |
| 00        | -020,0000  | 0.040,4201                     | 199,002            | -04,0002 |
| 62        | -394,6807  | 6.161,5246                     | 185,031            | -58,6944 |
| 64        | -453,3751  | 5.624,7285                     | 116,938            | -40,1020 |
|           |            |                                |                    | -        |

Voici le résultat de cet essai  $(\lambda_{1}=1,71467\times 10^{-10}~\mathrm{cm^{-1}})$  :

| Section<br>n <sup>o</sup> | ζ         | u                              | بر                 | Δζ       |
|---------------------------|-----------|--------------------------------|--------------------|----------|
|                           | cm        | 10 <sup>7</sup> m <sup>3</sup> | 10 <sup>3</sup> cm | cm       |
|                           |           |                                |                    |          |
| 66                        | -493,4771 | 5.144,0818                     | 96,151             | -32,9734 |
| 68                        | -526,4505 | 4.665,0119                     | 84,054             | -28,8250 |
| 70                        | -555,2755 | 4.143,6083                     | 71,938             | -24,0532 |
| 72                        | -579,3287 | 3.551,5344                     | 84,560             | -28,2735 |
| 74                        | -607,6022 | 2,997,4012                     | 98,599             | -33,8129 |
| 76                        | -641,4151 | 2.426,5418                     | 105,502            | -36,1802 |
| 78                        | -677,5953 | 1.962,3890                     | 79,129             | -20,3520 |
| 80                        | -697,9473 | 1.596,6647                     | 62,861             | -11,3175 |
| 82                        | -709,2648 | 1.269,6936                     | 73,393             | -12,5845 |
| 84                        | -721,8493 | 962,1858                       | 72,893             | -12,4987 |
| 86                        | -734,3480 | 675,0557                       | 81,924             | -14.0473 |
| 88                        | -748,3953 | 160,9081                       | 54,178             | -18,5795 |
| 89                        | -766,9748 | 34,3573                        |                    |          |
|                           |           |                                |                    |          |

Si l'on compare ces résultats avec ceux obtenus précédemment, on constate que l'écart entre les deux valeurs de  $\zeta$  au même point varie de manière assez régulière, tout en restant faible (quelques décimètres au maximum, avec les valeurs choisies ici); le nœud est déplacé d'environ 2,6 km vers le sud (par rapport aux résultats précédents). Quant à la période, si l'on considère l'ordre de grandeur du « résidu »  $u_{so}$  laissé par les derniers calculs, il faut s'attendre à trouver, au cas où l'on effectuerait de nouveaux essais avec 45 divisions, une période fondamentale de 30 à 40 sec. plus courte que celle obtenue précédemment.

La fonction propre u(v) enfin est également très peu altérée par la simplification introduite dans les calculs.

Bien entendu, pour les modes plus élevés (à deux et à trois nœuds) ces écarts deviendront plus considérables; aussi a-t-on préféré, dans tous les calculs relatifs aux seiches longitudinales du Tanganika, s'en tenir à 89 divisions; les calculs s'en trouvent un peu allongés, mais les résultats sont plus sûrs, et il y a grand avantage, pour la vérification de l'orthogonalité des fonctions propres u(v)correspondant aux trois modes étudiés, à utiliser le même nombre de divisions dans les trois cas.

Néanmoins, le présent essai constitue une belle illustration de la stabilité de la méthode de DEFANT.

b) Deuxième mode (seiche binodale). — Les derniers essais ont été effectués avec des valeurs propres  $\lambda_2$  égales à  $5,86153 \times 10^{-10}$  cm<sup>-1</sup> et  $5,88500 \times 10^{-10}$  cm<sup>-1</sup>, auxquelles correspondent des périodes T<sub>2</sub> égales à 8.299 sec. = 2 h. 18 min. 19 sec. et 8.282 sec. = 2 h. 18 min. 2 sec. Les « résidus »  $u_{s_2}$  respectifs sont de — 22,5656 × 10<sup>7</sup> m<sup>3</sup> et de  $1,8896 \times 10^7$  m<sup>3</sup>. Une interpolation linéaire (cf. p. 113) fournit alors la valeur « améliorée »  $\lambda_2 = 5,88319$ 

 $\times$   $10^{_{-10}}~{\rm cm^{-1}},$  à laquelle correspond la période  $T_{2}=8.283,8~{\rm sec.}=2$  h. 18 min. 3,8 sec.

C'est cette dernière valeur qui sera à nouveau considérée comme définitive.

Voici les calculs relatifs au dernier essai  $(\lambda_{2}=5,88500\times10^{_{-10}}~\mathrm{cm^{-1}})$  :

| Section | ζ          | u                              | ξ                  | Δζ        |
|---------|------------|--------------------------------|--------------------|-----------|
|         | cm         | 10 <sup>7</sup> m <sup>3</sup> | 10 <sup>3</sup> cm | cm        |
|         |            |                                |                    |           |
| 1       | 1.000,0000 | 114,0000                       | 48,510             | -15,7015  |
| 2       | 984,2985   | 239,9902                       | 74,071             | -21,7954  |
| 3       | 962,5031   | 354,5281                       | 107,108            | -31,5165  |
| 4       | 930,9866   | 465,3155                       | 136,057            | -40,0348  |
| 5       | 890,9518   | 560,6473                       | 152,350            | -44,8290  |
| 6       | 846.1228   | 650,3363                       | 153,020            | -45,0261  |
| 7       | 801,0967   | 740,0591                       | 149,507            | -43,9924  |
| 8       | 757,1043   | . 833,1829                     | 152,878            | -44,9844  |
| 9       | 712,1199   | 923,6221                       | 177,279            | -52,1643  |
| 10      | 659,9556   | 1.016,1059                     | 178,876            | -52,6343  |
|         | ,          |                                |                    |           |
| 11      | 607,3213   | 1.152,6632                     | 159,428            | -93,8234  |
| 12      | 513,4979   | 1.326,2255                     | 162,329            | -105,0837 |
| 13      | 408,4142   | 1.382,1782                     | 286,759            | -84,3788  |
| 14      | 324,0354   | 1.443,0969                     | 254,964            | -120,0371 |
| 15      | 203,9983   | 1.493,6885                     | 168,969            | -94,4663  |
|         |            |                                |                    |           |
| .16     | 109,5320   | 1.519,7571                     | 114,699            | -64,1253  |
| 17      | 45,4067    | 1.533,6515                     | 72,996             | -38,6623  |
| 18      | 6,7444     | 1.536,6865                     | 64,757             | -36,2040  |
|         | Nœud       |                                |                    |           |
| 19      | - 29,4596  | 1.521,3970                     | 35,275             | -20,7593  |
| 20      | - 50,2189  | 1.489,0058                     | 27,316             | -16,0755  |
|         |            |                                |                    | 10.0100   |
| 21      | - 66,2944  | 1.451,7483                     | 23,541             | -18,0100  |
| 22      | - 84,3044  | 1.403,1047                     | 21,619             | -12,7228  |
| 23      | - 97,0272  | 1.356,2406                     | 20,833             | -14,0993  |
| 24      | -111,1265  | 1.303,6778                     | 21,620             | -14,6319  |
| 25      | -125,7584  | 1.229,1031                     | 19,541             | -14,3748  |
| 26      | -140,1332  | 1.148.1061                     | 19,296             | -13.0590  |
| 27      | -153,1922  | 1.060.6334                     | 19.862             | -11,6888  |
| 28      | -164.8810  | 973,5762                       | 25,288             | -14.1379  |
| 29      | -179.0189  | 882,4556                       | 29,415             | -17.3107  |
| 30      | -196,3296  | 787,4321                       | 21,168             | -11,8345  |
|         |            |                                |                    |           |
| 31      | -208,1641  | 688,7623                       | 21,796             | -12,8269  |
| 32      | -220,9910  | 635,7245                       | 20,775             | - 4,8904  |
| 33      | -225,8814  | 581,9647                       | 20,278             | - 5,3701  |
| 34      | -231,2515  | 515,3643                       | 15,202             | - 4,0259  |
| 35      | -235,2774  | 444,3105                       | 13,068             | - 3,0762  |
|         | 000 0500   | 940 0550                       | 0.050              | 1.1015    |
| 30      | -238,3536  | 310,3558                       | 9,979              | - 4,4040  |
| 51      | -242,1001  | 107,1280                       | 0,200              | - ~,1152  |

# DES OSCILLATIONS LIBRES (SEICHES)

| Section  | ζ                   | u                              | ξ                  | Δζ            |
|----------|---------------------|--------------------------------|--------------------|---------------|
| nº       | cm                  | 10 <sup>7</sup> m <sup>3</sup> | 10 <sup>3</sup> cm | cm            |
|          |                     |                                |                    |               |
| 38       | -245,5313<br>Ventre | 80,7015                        | 3,377              | - 0,9937      |
| 39       | -246.5250           | - 5.0892                       | -0.2557            | 0.0752        |
| 40       | -246 4498           | -30.7200                       | - 1.688            | 0.1490        |
| 40       |                     |                                | 1,000              | 0,1100        |
| 41       | -246,3008           | - 85,1525                      | - 3,447            | 0,7100        |
| 42       | -245.5908           | -169,8813                      | - 7,550            | 2,2216        |
| 43       | -243.3692           | -241,4318                      | -10,636            | 3,1296        |
| 10       | -240 2396           | -306 2965                      | -13 375            | 3 9356        |
| 44       | -240,2000           | 262 694                        | 47 445             | 5 5404        |
| 40       | -230,3040           | -303,4021                      | -17,145            | 5,5454        |
| 46       | -230,7546           | -417,7094                      | -20,376            | 5,9956        |
| 47       | -224,7590           | -465,1335                      | -22,801            | 6,7092        |
| 48       | -218.0498           | -521.8264                      | -24.968            | 10,2856       |
| 49       | -207.7642           | -586,8566                      | -21.655            | 8,9208        |
| 50       |                     | -682 3014                      | -23 208            | 13 6579       |
| 30       | 150,0404            | 002,0014                       | 20,200             | 10,0015       |
| 51       | -185.1855           | -769.5238                      | -24.823            | 13,8779       |
| 52       | -171.3076           | -815,6055                      | -24.790            | 7.2945        |
| 52       | -164 0131           | -868 4177                      | -25 348            | 7 4498        |
| 55       |                     | 004 6409                       | 06 101             | 7 7090        |
| 04<br>   | -136,3635           | -921,0492                      | -20,484            | 1,1929        |
| 55       | -148,7704           | -976,0992                      | -27,039            | 8,7518        |
| 56       | -140,0186           | -1.019,3649                    | -29,292            | 8,6192        |
| 57       | -131.3994           | -1.057,2079                    | -30,206            | 9,7769        |
| 58       | -121.6225           | -1.088.4649                    | -32,491            | 9,5605        |
| 50       | -112 0620           | -1 149 7628                    | -37 330            | 20 8703       |
| 59<br>60 | - 91 4947           | -1 209 0374                    | -36,307            | 20,2983       |
| 00       | 51,1517             | 1.205,0014                     | 50,001             | 20,2000       |
| 61       | - 70,8934           | -1.253,2040                    | -43,363            | 24,2432       |
| 62       | - 46,6502           | -1.281,1008                    | -38,471            | 20,3762       |
| 63       | -26.2740            | -1.296.4974                    | -29,736            | 17,4996       |
| 64       | - 8 7744            | -1 301 7445                    | -27 063            | 15 9266       |
| 04       | Noud                | 1.001,110                      | ~1,000             | 10,0000       |
| 65       | 7.1522              | -1.298.0611                    | -25,254            | 14,8620       |
|          | .,                  |                                |                    | ,             |
| 66       | 22,0142             | -1.287,9566                    | -24,074            | 14,1675       |
| 67       | 36,1817             | -1.272,0005                    | -24,844            | 14,6207       |
| 68       | 50,8024             | -1.248,1742                    | -22,490            | 13,2354       |
| 69       | 64.0378             | -1.218.9089                    | -21,016            | 12,3679       |
| 70       | 76,4057             | -1.182,0814                    | -20,522            | 11,4733       |
|          |                     | ·                              |                    |               |
| 71       | 87,8790             | -1.136,3843                    | -23,004            | 13,5379       |
| 73       | 101,4169            | -1.085,4730                    | -25,845            | 14,4493       |
| 73       | 115,8662            | -1.031,4794                    | -25,787            | 15,1756       |
| 74       | 131,0418            | -973,0348                      | -32,008            | 18,8367       |
| 75       | 149,8785            | -907,6878                      | -36,898            | 21,7145       |
|          |                     |                                | 0.0                | 04, 0010      |
| 76       | 171,5930            | -829,7846                      | -36,078            | 21,2319       |
| 77       | 192,8249            | -743,2062                      | -31,492            | 18,5330       |
| 78       | 211,3579            | -693,3257                      | -27,957            | 8,2263        |
| 79       | 219,5842            | -639,0884                      | -28,531            | 8,3952        |
| 80       | 227,9794            | -575,9381                      | -22,675            | 7,3393        |
|          |                     |                                |                    | <b>P</b> 010- |
| 81       | 235,3187            | -516,8731                      | -25,974            | 7,6428        |

| Section<br>nº | ζ        | u                  | لا                 | Δζ      |
|---------------|----------|--------------------|--------------------|---------|
|               | cm       | 107 m <sup>3</sup> | 10 <sup>3</sup> cm | cm      |
| 82            | 242,9615 | -465,8512          | -26,928            | 7,9236  |
| 83            | 250,8851 | -411,6600          | -28,004            | 8,2402  |
| 84            | 259,1253 | -357,2437          | -27,064            | 7,9636  |
| 85            | 267,0889 | -305,6955          | -34,348            | 10,1069 |
| 86            | 277,1958 | -250,8107          | -30,438            | 8,9564  |
| 87            | 286,1522 | -144,3621          | -25,779            | 15,1709 |
| 88            | 301,3231 | - 49,4453          | -16,648            | 9,7973  |
| 89            | 311,1204 | 1,8896             |                    |         |

Le nœud septentrional se trouve à une dizaine de km au sud de Nyanza et coïncide approximativement avec le parallèle passant à cet endroit; le nœud méridional se trouve à 5 km environ au nord de la ligne Zongwe (côte ouest) — Utinta (côte est).

c) Troisième mode (seiche trinodale). — Les derniers essais ont été effectués avec des valeurs propres  $\lambda_3$  égales à  $9,420 \times 10^{-10}$  cm<sup>-1</sup> et  $9,813 \times 10^{-10}$  cm<sup>-1</sup>, auxquelles correspondent des périodes T<sub>3</sub> égales à 6.546 sec. = 1 h. 49 min. 06 sec. et 6.414 sec. = 1 h. 46 min. 54 sec.

Les « résidus » respectifs  $u_{s9}$  sont de  $218,9797 \times 10^7$  m<sup>3</sup> et de  $0,1914 \times 10^7$  m<sup>3</sup>. L'interpolation linéaire n'étant guère praticable dans ce cas, on adoptera comme définitif le résultat obtenu par le dernier essai ( $\lambda_3 = 9,813 \times 10^{-10}$  cm<sup>-1</sup>, T<sub>3</sub> = 6.414 sec. = 1 h. 46 min. 54 sec.).

Section ζ ξ Δζ u  $\mathbf{n}^{\mathbf{o}}$ 107 m<sup>3</sup> 10<sup>3</sup> cm  $\mathbf{cm}$ em 1.000,0000 114,0000 48,510 - 26,1816 1 - 36,1398 973,8184 73,657 2 238,6488 937,6786 - 51,9157 3 350,2326 105,810 4 885,7629 455,6384 133,228 - 65,3683 820,3946 147,669 - 72,4538 5 543,4206 6 747,9408 622,7023 - 71,8891 146,518 - 69,2283 7 676,0517 698,4201 141,095 606,8234 141,846 - 69,5967 8 773,0594 9 537,2267 841,2872 161,475 - 79,2277 10 457,9990 905,4071 159,403 - 78,2111 379,7879 137,048 -134,4852 990,8594 11 12 245,3027 1.073,7717 131,429 -141,8684 103,4343 225,714 -110,7466 13 1.087,9422 Nœud -150,70657,3123 1.086,5675 191,973 14 1.047,3788 -110,4531 15 -158,0188118,482

Voici les calculs relatifs à ce dernier essai :

# DES OSCILLATIONS LIBRES (SEICHES)

**P** 

| Section  | ζ                   | u                              | ĸ                  | Δζ        |
|----------|---------------------|--------------------------------|--------------------|-----------|
| По       | cm                  | 10 <sup>7</sup> m <sup>3</sup> | 10 <sup>3</sup> cm | cm        |
|          |                     |                                |                    |           |
| 16       | -268,4719           | 983,4825                       | 74,225             | - 69,1951 |
| 17       | -337,6670           | 880,1564                       | 41,892             | - 36,9978 |
| 18       | -374.6648           | 711,5572                       | 29,986             | -27,9540  |
| 19       | -402 6188           | 502 5980                       | 11 653             | - 11 /351 |
| 10       | 402,0100            | 002,000                        | 11,000             | 11,4001   |
| 20       | -414,0339           | 230,0332                       | 4,321              | - 4,2402  |
| 21       | -418,2941<br>Ventre | 0,4519                         | 0,0073             | - 0,0093  |
| 22       | -418 3034           | -240 9092                      | - 3 712            | 3 6426    |
| ~~<br>92 | -444 6608           | 444 4004                       | 6 777              | 7 6179    |
| 20       | -414,0008           | -441,1904                      | - 0,111            | 1,0478    |
| 24       | -407,0130           | -633,7075                      | - 10,509           | 11,8594   |
| 25       | -395,1536           | -868,0336                      | - 13,800           | 16,9274   |
| 26       | -378 2262           | -1 086 6483                    | - 18 263           | 20 6097   |
| 20       | 010,2202            | 4 900 9472                     | - 18,205           | 20,0031   |
| 21       | -357,6165           | -1.290,8473                    | - 24,173           | 23,7210   |
| 28       | -333,8955           | -1.467,1441                    | - 38,108           | 35,5256   |
| 29       | -298,3699           | -1.619,0144                    | - 53,967           | 52,9578   |
| 30       | -245,4121           | -1.737,7939                    | - 46,715           | 43,5494   |
| 31       | -201 8627           | -1 833 4768                    | - 58 021           | 56 9360   |
| 20       | 111,0027            | -1.000,4700                    | - 58,021           | 30,3300   |
| 52       | -144,9267           | -1.868,2592                    | - 61,054           | 23,9649   |
| 33       | -120,9618           | -1.897,0481                    | - 66,099           | 29,1883   |
| 34       | - 91,7735           | -1.923,4789                    | - 56,740           | 25,0555   |
| 35       | - 66,7180           | -1.943,6277                    | - 57,166           | 22,4388   |
| 36       | - 44,2792<br>Noud   | -1.968,5126                    | - 63,296           | 46,5843   |
| 977      | 9 2054              | 4 067 4596                     | 72 052             | 51 1976   |
| 57       | 2,3031              | -1.907,1520                    | - 75,955           | 54,4270   |
| 38       | 56,7327             | -1.947,1827                    | - 81,472           | 39,9742   |
| 39       | 96,7069             | -1.913,5287                    | - 96,157           | 47,1794   |
| 40       | 143,8863            | -1.898,5645                    | -104,317           | 15,3549   |
| 44       | 150 9419            | -1 863 3799                    | - 75 440           | 25 0402   |
| 41       | 139,2412            | -1.803,5722                    | - 75,440           | 23,9102   |
| 42       | 185,1514            | -1.799,4950                    | - 79,978           | 39,2412   |
| 43       | 224,3926            | -1.733,5236                    | - 76,367           | 37,4695   |
| 44       | 261,8621            | -1.662,8208                    | - 72,612           | 35,6761   |
| 45       | 297,5382            | -1.590,8166                    | - 75,039           | 40,4997   |
| 46       | 338 0379            | -1 511 3777                    | - 73 796           | 36 1737   |
| 47       | 27% 9446            | 1 429 4404                     | 70 947             | 94 4590   |
| 41       | 574,2110            | -1.452,4191                    | - 70,217           | 54,4520   |
| 48       | 408,6636            | -1.326,1666                    | - 63,453           | 43,5865   |
| 49       | 452,2501            | -1.184,6123                    | - 43,713           | 30,0269   |
| 50       | 482,2770            | - 953,1193                     | - 32,419           | 31,8128   |
| 54       | 514 0908            | -710 0820                      | - 99 035           | 21 3808   |
| 50       | 514,0000            | 110,3000<br>ECC 0111           | - 22,000           | ~1,0000   |
| 52       | 000,4700            | -300,9414                      | - 17,232           | 0,4049    |
| 53       | 543,9255            | -391,7974                      | - 11,423           | 5,6047    |
| 54       | 549,5302            | -204,9571                      | - 5,890            | 2,8899    |
| 55       | 552,4201            | - 2,7713                       | - 0,0768           | 0,0414    |
|          | Ventre              |                                |                    |           |
| 56       | 552,4615            | 167,9393                       | 4,826              | - 2,3679  |
| 57       | 550,0936            | 326,3663                       | 9,325              | - 5,0328  |
| 58       | 545,0608            | 466.4469                       | 13.924             | - 6.8318  |
| 59       | 538 9900            | 760 8500                       | 9% 709             | - 22 0200 |
| 60       | 500,2200            | 100,000%                       | 29,00F             | 20 6759   |
| 00       | 919,2000            | 1.099,7382                     | 32,905             | - 30,0752 |

| Section   | ζ               | u                              | ξ                  | Δζ        |
|-----------|-----------------|--------------------------------|--------------------|-----------|
| no        |                 |                                |                    |           |
|           | cm              | 10 <sup>7</sup> m <sup>3</sup> | 10 <sup>3</sup> cm | cm        |
|           |                 |                                | 10.000             | 15 0000   |
| 61        | 484,5248        | 1.397,5971                     | 48,360             | - 45,0829 |
| 62        | 439,4419        | 1.660,3834                     | 49,861             | - 44,0357 |
| 63        | 395,4062        | 1.892,0914                     | 43,397             | - 42,5855 |
| 64        | 352,8207        | 2.103,0782                     | 43,723             | - 42,9054 |
| 65        | 309,9153        | 2.262,6846                     | 44,021             | - 43,1978 |
| <u>cc</u> | 966 7475        | 9 995 4070                     | 11 591             | - 43 7479 |
| 00        | 200,7175        | 2.363,1079                     | 44,381             |           |
| 07        | 222,9702        | 2.483,4378                     | 48,000             | - 47,3980 |
| 68        | 175,5722        | 2.505,6874                     | 46,229             | - 45,3645 |
| 69<br>70  | 130,0077        | 2.625,1009                     | 45,260             | - 44,4136 |
| '70       | 85,5941         | 2.666,3573                     | 46,291             | - 43,1541 |
| 17/4      | 49 4400         | 9 699 1961                     | 54 499             | 52 4042   |
| 11        | 42,4400<br>Nœud | 2.000,4201                     | 54,422             | - 55,4045 |
| 72        | - 10,9643       | 2.682,9220                     | 63,879             | - 59,5502 |
| 73        | - 70,5145       | 2.650,0622                     | 66,252             | - 65,0131 |
| 74        | -135,5276       | 2.589,6169                     | 85,185             | - 83,5920 |
| 75        | -219,1196       | 2.494,0808                     | 101,385            | - 99,4891 |
|           |                 |                                |                    |           |
| 76        | -318,6087       | 2.349,4325                     | 102,149            | -100,2388 |
| 77        | -418,8475       | 2.161,3700                     | 91,583             | - 89,8704 |
| 78        | -508,7179       | 2.041,3126                     | 82,311             | - 40,3859 |
| 79        | -549,1038       | 1.905,6840                     | 85;075             | - 41,7420 |
| 80        | -590,8458       | 1.742,0197                     | 68,583             | - 37,0153 |
|           |                 |                                |                    |           |
| 81        | -627,8611       | 1.584,4266                     | 79,619             | - 39,0651 |
| 82        | -666,9262       | 1.444,3721                     | 83,490             | - 40,9644 |
| 83        | -707,8906       | 1.291,4677                     | 87,855             | - 43,1061 |
| 84        | -750,9967       | 1.133,7584                     | 85,891             | - 42,1424 |
| 85        | -793,1391       | 980,6826                       | 110,189            | - 54,0642 |
|           |                 |                                |                    |           |
| 86        | -847,2033       | 812,9363                       | 98,657             | - 48,4061 |
| 87        | -895,6094       | 479,7696                       | 85,673             | - 84,0709 |
| 88        | -979,6803       | 171,1703                       | 57,633             | - 56,5553 |
| 89        | -1.036,2356     | 0,1914                         | —                  |           |
|           |                 |                                |                    |           |

Le nœud septentrional se trouve à une douzaine de km au sud de Rumonge et coïncide approximativement avec le parallèle passant par cet endroit. Le nœud central se trouve à 10 km environ au nord d'Albertville et coïncide également avec le parallèle de l'endroit. Le nœud méridional passe à 8 km environ au sud de la ligne Kala (côte est) — Moliro (côte ouest).

d) Remarques diverses à propos de calcul des trois premiers modes. — Afin de se rendre compte de l'effet de la « rectification » du contour du lac, il était intéressant de faire les calculs avec un lac Tanganika non « rectifié ». Il y a alors lieu de dresser une nouvelle table de données bathymétriques et géographiques, qu'il est inutile de reproduire ici. On trouve les résultats suivants :

 $1^{\circ}$  Mode fondamental (seiche uninodale).  $\lambda_{1}=1,638903\times 10^{-10}~{\rm cm^{-1}}$  (valeur « améliorée », obtenue par interpolation linéaire), d'où  $T_{1}\!=\!15.694$  sec.

= 4 h. 21 min. 34 sec. L'écart sur la valeur propre atteint environ 4,4 %; celui sur la période est de 2,27 %.

Le nœud du lac non « rectifié » passe 4 ou 5 km au sud de celui du lac « rectifié ».

2° Deuxième mode (seiche binodale).  $\lambda_2 = 5,6809 \times 10^{-10}$  cm<sup>-1</sup> (valeur « améliorée », obtenue par interpolation linéaire), d'où T<sub>2</sub> = 8.429 sec. = 2 h. 20 min. 29 sec. L'écart sur la valeur propre est voisin de 3,46 %; celui sur la période est de 1,75 % environ.

Le nœud septentrional du lac non « rectifié » se trouve 6 km environ au sud de celui du lac « rectifié »; quand au nœud méridional du lac non « rectifié », il se trouve approximativement 15 km plus au sud que celui du lac « rectifié ».

3° Troisième mode (seiche trinodale).  $\lambda_3 = 9,0935 \times 10^{-10}$  cm<sup>-1</sup> (valeur « améliorée » par interpolation linéaire), d'où T<sub>3</sub> = 6.663 sec. = 1 h. 51 min. 3 sec. L'écart sur la valeur propre est de 7,33 % environ et celui sur la période, de 3,88 %.

Le nœud septentrional du lac non « rectifié » se trouve 3 ou 4 km au sud de celui du lac « rectifié »; pour le nœud central, l'écart est de 6 ou 7 km vers le sud et pour le nœud méridional, il atteint 12 ou 13 km, toujours vers le sud.

Durant le mois d'août 1955, nous avons pu contrôler certains de nos calculs au moyen de la machine à calculer électronique appartenant au C.E.C.E. (Comité d'Étude et d'Exploitation des Calculateurs Électroniques, a.s.b.l.; siège social : 31, rue Belliard, Bruxelles) et actuellement à l'essai dans les locaux de la Bell Telephone Mfg C°, à Anvers. Les résultats, obtenus avec seize décimales (en point décimal fixe) ont été des plus satisfaisants : au début des calculs, il y a concordance pour les sept premiers chiffres des tables de u; pour les tables  $\zeta$  et de  $\xi$ , cette concordance est respectivement de six et cinq chiffres. La précision sur  $\xi$  est nécessairement moindre que sur  $\zeta$  : en effet,  $\xi = u/S$ , et S est une donnée de bien moindre précision que u. L'« arrondi » pratiqué tout au long des calculs effectués avec machine de bureau a pour effet de réduire progressivement cette concordance de un, puis finalement de deux chiffres. La correction qui résulterait de ce léger désaccord est entièrement négligeable.

Il reste à examiner maintenant la question de la validité des interpolations linéaires, effectuées pour améliorer les valeurs propres obtenues par des essais successifs à l'aide de la méthode de DEFANT. Voici d'abord les tableaux des résultats obtenus par ces essais :

| Essai<br>n <sup>o</sup>          | $\lambda_1$<br>10 <sup>-10</sup> cm <sup>-1</sup>                          | $\Delta\lambda_1$ =1,71417×10 <sup>-10</sup> cm <sup>-1</sup> - $\lambda_1$                    | u <sub>89</sub><br>10 <sup>7</sup> m <sup>3</sup>                         | $\left(\frac{du}{dv}\right)_{0}$ $10^{2} \text{ cm}$                                    | $\Delta \left(\frac{du}{dv}\right)_{0} = 0,9975810 \times 10^{2} \mathrm{cm} - \left(\frac{du}{dv}\right)_{0}$ |
|----------------------------------|----------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
| 1<br>2<br>3<br>4<br>5<br>6<br>*7 | 1,63995<br>1,68027<br>1,71807<br>1,71545<br>1,71279<br>1,71467<br>*1,71417 | $\begin{array}{c} 0,07422\\ 0,03390\\ -0,00390\\ -0,00128\\ 0,00138\\ -0,00050\\ 0\end{array}$ | 532,4758<br>237,7803<br>- 17,7325<br>- 8,9276<br>9,7841<br>- 3,5775<br>0? | 0,9976855<br>0,9976289<br>0,9975756<br>0,9975793<br>0,9975831<br>0,9975802<br>0,9975810 | $\begin{array}{c} -0,0001045\\ -0,0000479\\ 0,0000054\\ 0,0000017\\ -0,0000021\\ 0,0000008\\ 0\end{array}$     |

1° Mode fondamental.

### 2° Deuxième mode.

| $\begin{array}{c c} Essai \\ n^0 \\ \hline 10^{-10} cm^{-1} \end{array}$ | $\Delta \lambda_2 = 5,88319 \times 10^{-10} \mathrm{cm}^{-1} - \lambda_2$ | <i>u</i> <sub>89</sub><br>10 <sup>7</sup> m <sup>3</sup>                  | $\left(\frac{du}{dv}\right)_{0}$ $10^{2} \text{ cm}$          | $ \begin{vmatrix} \Delta \left( \frac{du}{dv} \right)_{0} \\ = 0,9916996 \times 10^{2}  \mathrm{cm} - \left( \frac{du}{dv} \right)_{0} \end{vmatrix} $ |
|--------------------------------------------------------------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1 5,68570<br>2 5,94180<br>3 5,86153<br>4 5,88500<br>*5 *5,88319          | 0,19749<br>-0,05861<br>0,02166<br>-0,00181<br>0                           | $\begin{array}{r} -216,8807\\ 59,5261\\ -22,5656\\ 1,8896\\ 0\end{array}$ | 0,9919760<br>0,9916149<br>0,9917281<br>0,9916950<br>0,9916996 | $\begin{array}{c} -0,0002764\\ 0,0000847\\ -0,0000285\\ 0,0000046\\ 0\end{array}$                                                                      |

### 3° Troisième mode.

| Essai<br>n <sup>o</sup> | $\lambda_3$ $10^{-10} { m cm}^{-1}$ | $\Delta \lambda_3$<br>=9,813×10 <sup>-10</sup> cm <sup>-1</sup> — $\lambda_3$ | u <sub>89</sub><br>10 <sup>7</sup> m <sup>3</sup> | $\left(\frac{du}{dv}\right)_{0}$ $10^{2} \text{ cm}$ | $\Delta \left(\frac{du}{dv}\right)_{0} = 0,9861521 \times 10^2 \text{ cm} - \left(\frac{du}{dv}\right)_{0}$ |
|-------------------------|-------------------------------------|-------------------------------------------------------------------------------|---------------------------------------------------|------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|
| 1                       | 9,110                               | 0,703                                                                         | 379,4011                                          | 0,9871446                                            | -0,0009925                                                                                                  |
| 2                       | 9,843                               | -0,030                                                                        | -16,6580                                          | 0,9871095                                            | 0,0000426                                                                                                   |
| 3                       | 9,420                               | 0,393                                                                         | 218,9797                                          | 0,9867066                                            | 0,0005545                                                                                                   |
| 4                       | 9,813                               | 0                                                                             | 0,1914                                            | 0,9861521                                            | 0                                                                                                           |

Les valeurs de  $\lambda$  marquées d'un astérisque sont celles obtenues par interpolation linéaire sur  $u_{s_9}$  et n'ont plus fait l'objet d'un nouvel essai. La validité du procédé est illustrée par les graphiques page **126**. Ces graphiques ont été construits comme suit :

On a porté en abscisse  $\log_{10} (\Delta \lambda + C^{te})$  et en ordonnée  $\log_{10} (u_{s9} + C^{te})$  (courbes en trait interrompu) ou  $\log_{10} [\Delta (du/dv)_0 + C^{te}]$  (courbes en pointillé).

#### DES OSCILLATIONS LIBRES (SEICHES)

L'addition de constantes à  $\Delta\lambda$ ,  $u_{s_9}$  et  $\Delta(du/dv)_0$  équivaut à une translation des axes pour les deux systèmes de courbes; ces constantes ont été choisies de manière à ce que toutes les quantités d'une même colonne aient le même signe, chose indispensable quand on utilise une échelle logarithmique. Pour le calcul des log, on a encore multiplié les données ainsi modifiées par  $10^{15}$  cm (colonnes des  $\Delta\lambda + C^{te}$ ), par  $10^{-7}$  m<sup>-3</sup> (colonnes des  $u_{s_9} + C^{te}$ ) (<sup>86</sup>) et par — $10^5$  cm<sup>-1</sup> (colonnes des  $\Delta(du/dv)_0 + C^{te}$ ). Les  $\Delta\lambda$ ,  $u_{s_9}$  et  $\Delta(du/dv)_0$  ainsi modifiés sont marqués d'un astérisque dans les tables ci-dessous.

Quant à l'usage de l'échelle logarithmique elle-même, il s'imposait de toute évidence, étant donné les écarts entre les valeurs à porter en abscisse et en ordonnée sur les graphiques.

Les trois constantes ont pour valeurs respectives :

1° Pour le mode fondamental :  $0,00600 \times 10^{-10} \text{ cm}^{-1}$ ;  $50 \times 10^7 \text{ m}^3$ ; --0,0000100 × 10<sup>2</sup> cm.

2° Pour le second mode :  $0,00700 \times 10^{-10} \text{ cm}^{-1}$ ;  $-100 \times 10^7 \text{ m}^3$ ;  $-0,0002000 \times 10^2 \text{ cm}$ .

3° Pour le troisième mode :  $0,05000 \times 10^{-10}$  cm<sup>-1</sup>;  $50 \times 10^7$  m<sup>3</sup>;  $0,00010000 \times 10^2$  cm.

On obtient ainsi les trois tableaux suivants, à l'aide desquels on a construit les graphiques; toutes les grandeurs y sont des nombres purs. Il est à remarquer que dans la colonne des  $u_{89}$  on n'a retenu que quatre chiffres significatifs, au lieu des six ou sept chiffres utilisés dans les essais par la méthode de DEFANT.

| Essai<br>n <sup>o</sup> | $\Delta \lambda_1^*$ | $\log_{10}\Delta\lambda_1^*$ | u <sub>89</sub> * | $\log_{10} u_{89}^{*}$ | $\Delta \left( rac{du}{dv}  ight)_{m 0}^{*}$ | $\left \log_{10}\Delta\left(\frac{du}{dv}\right)_{0}^{*}\right $ |
|-------------------------|----------------------|------------------------------|-------------------|------------------------|-----------------------------------------------|------------------------------------------------------------------|
| 1                       | 8.022                | 3,904                        | 582,50            | 2,765                  | 1.145                                         | 3,059                                                            |
| 2                       | 3.990                | 3,601                        | 287,80            | 2,459                  | 579                                           | 2,763                                                            |
| 3                       | 210                  | 2,322                        | 32,27             | 1,509                  | 46                                            | 1,663                                                            |
| 4                       | 472                  | 2,674                        | 41,07             | 1,614                  | 83                                            | 1,919                                                            |
| 5                       | 738                  | 2,868                        | 59,78             | 1,777                  | 121                                           | 2,083                                                            |
| 6                       | 550                  | 2,740                        | 46,42             | 1,667                  | 92                                            | 1,964                                                            |
| 7                       | 600                  | 2,778                        | 50,00             | 1,699                  | 100                                           | 2,000                                                            |
|                         |                      |                              |                   |                        |                                               |                                                                  |

1° Mode fondamental.

(<sup>86</sup>) Pour le deuxième mode, ce facteur est pris égal à  $-10^{-7}$  m<sup>-3</sup> afin de rendre positives toutes les grandeurs de cette colonne.



FIG. 15. — Lac Tanganika. Modes d'oscillation longitudinaux (méthode de DEFANT). Courbes montrant la validité et l'interpolation linéaire pour améliorer la valeur de  $\lambda$ : 1) à partir du « résidu »  $u_{89}$  (courbes en trait interrompu);

2) à partir de l'inclinaison de la tangente à l'origine à la courbe u(v) (courbes en pointillé). En chiffres romains : le mode considéré.

| Essai<br>n <sup>o</sup> | $\Delta \lambda_2^*$ | $\log_{10}\Delta\lambda_2^*$ | u <sub>89</sub> * | log <sub>10</sub> u <sub>89</sub> * | $\Delta \left(\frac{du}{dv}\right)_{0}^{\mathbf{*}}$ | $\log_{10}\Delta\left(rac{du}{dv} ight)^*_{0}$ |
|-------------------------|----------------------|------------------------------|-------------------|-------------------------------------|------------------------------------------------------|-------------------------------------------------|
| 1                       | 26.749               | 4,427                        | 316,9             | 2,501                               | 4.764                                                | 3,678                                           |
| 2                       | 1.139                | 3,056                        | 40,47             | 1,607                               | 1.153                                                | 3,062                                           |
| 3                       | 9.166                | 3,962                        | 122,6             | 2,088                               | 2.285                                                | 3,359                                           |
| 4                       | 6.819                | 3,834                        | 98,11             | 1,992                               | 1.952                                                | 3,290                                           |
| 5                       | 7.000                | 3,845                        | 100,00            | 2,000                               | 2.000                                                | 3,301                                           |
|                         |                      |                              |                   |                                     |                                                      |                                                 |

2° Deuxième mode.

| Essai<br>n <sup>o</sup> | $\Delta \lambda_3^*$ | $\log_{10}\Delta\lambda_3^*$ | u <sub>89</sub> * | log <sub>10</sub> u <sub>89</sub> * | $\Delta \left(\frac{du}{dv}\right)_{0}^{*}$ | $\log_{10}\Delta \left(\frac{du}{dv}\right)_0^*$ |
|-------------------------|----------------------|------------------------------|-------------------|-------------------------------------|---------------------------------------------|--------------------------------------------------|
| 1                       | 753                  | 2,877                        | 429,4             | 2,633                               | 10.925                                      | 4,039                                            |
| 2                       | 20                   | 1,301                        | 33,34             | 1,523                               | 574                                         | 2,759                                            |
| 3                       | 443                  | 2,646                        | 269,0             | 2,430                               | 6.545                                       | 3,816                                            |
| 4                       | 50                   | 1,699                        | 50,19             | 1,701                               | 1.000                                       | 3,000                                            |
|                         |                      |                              |                   |                                     |                                             |                                                  |

3° Troisième mode.

La très faible courbure des courbes données sur le graphique de la figure 15 semble justifier pleinement l'emploi de l'interpolation linéaire pour l'amélioration de la valeur propre  $\lambda$  à partir d'anciennes valeurs d'essai.

Il est indifférent à cet effet d'utiliser le « résidu »  $u_{ss}$  laissé par un  $\lambda$  d'essai, ou bien de se servir de l'inclinaison de la tangente à l'origine à la courbe u(v); les courbes en pointillé et celles en trait interrompu ont des allures entièrement semblables.

e) Vérification de l'orthogonalité des fonctions propres des trois premiers modes. — Pour des raisons de simplicité exposées plus haut (pp. 98-99), on a calculé ici les intégrales :

$$\int_{0}^{a} \frac{u_{i} u_{j}}{\tau(v)} dv = \int_{0}^{1} u_{i} \xi_{j} dx \qquad (i, j = 1, 2, 3)$$

En procédant par la règle des rectangles, on a obtenu les résultats suivants :

$$\int_{0}^{t} u_{1} \xi_{1} dx = 5.220,2458 \times 10^{46} \text{m}^{5};$$

$$\int_{0}^{t} u_{2} \xi_{2} dx = 325,6723 \times 10^{46} \text{m}^{5};$$

$$\int_{0}^{t} u_{3} \xi_{3} dx = 584,3774 \times 10^{46} \text{m}^{5};$$

$$\int_{0}^{t} u_{1} \xi_{2} dx = -0,0781 \times 10^{46} \text{m}^{5};$$

$$\int_{0}^{t} u_{2} \xi_{4} dx = -0,0796 \times 10^{46} \text{m}^{5};$$

$$\int_{0}^{t} u_{2} \xi_{3} dx = 0,5086 \times 10^{46} \text{m}^{5};$$

$$\int_{0}^{t} u_{3} \xi_{2} dx = 0,5080 \times 10^{46} \text{m}^{5};$$

$$\int_{0}^{t} u_{3} \xi_{1} dx = -0.4290 \times 10^{16} \mathrm{m}^{5};$$
$$\int_{0}^{t} u_{1} \xi_{3} dx = -0.4295 \times 10^{16} \mathrm{m}^{5}.$$

Les normes  $N_{ij}$ , racines carrées des produits des trois premières intégrales prises deux à deux, sont respectivement :

 $N_{12} = 1.303,875 \times 10^{46} m^5;$   $N_{23} = 436,252 \times 10^{16} m^5;$   $N_{31} = 1.746,595 \times 10^{16} m^5.$ 

Les quotients des intégrales

$$\int_{0}^{i} u_{i} \xi_{j} dx \qquad (i \neq j)$$

(on a calculé séparément, à titre de vérification,

$$\int_0^l u_i \, \xi_j \, dx \quad \text{et} \quad \int_0^l u_j \, \xi_i \, dx$$

et l'accord des résultats obtenus est pratiquement parfait) par les normes respectives sont :

$$(i = 1, j = 2): -0,000060,$$
  
 $(i = 2, j = 3): 0,001165,$   
 $(i = 3, j = 1): -0,000246,$ 

(au lieu de la valeur zéro prévue par la théorie). Ces résultats permettent de conclure à une orthogonalité quasi rigoureuse des trois premiers modes normaux entre eux.

f) Les graphiques ci-après représentent les fonctions propres  $u_1(v)$ ,  $u_2(v)$ et  $u_3(v)$  (en ordonnée u, en abscisse v), et la distribution des amplitudes  $\zeta$  des seiches correspondantes, tout le long du lac (ordonnée  $\zeta$ , abscisse x); ces derniers graphiques montrent comment le deuxième mode affecte surtout l'extrémité nord du lac et comment le troisième mode affecte aussi bien l'extrémité nord que l'extrémité sud, tandis que le fondamental présente des amplitudes à peine plus fortes dans la moitié nord que dans la moitié sud du lac.

,











FIG. 18. — Lac Tanganika. Fonction propre du 3<sup>e</sup> mode longitudinal

.

(méthode de DEFANT; contour « rectifié »).

OSCILLATIONS LIBRES (SEICHES)







g) Comparons maintenant les seiches du Tanganika, telles qu'elles ont été obtenues par la méthode de DEFANT, à celles d'un canal à fond plan et à celles d'un canal à fond parabolique. On peut dresser le tableau suivant (a=surface totale du lac ou canal; les données entre parenthèses se rapportent au Tanganika non « rectifié »).

| Lac Tanganika                                   | Canal à fond plan          | Canal à fond parabolique   |
|-------------------------------------------------|----------------------------|----------------------------|
| $T_1 = 15.346 \text{ sec} (15.694 \text{ sec})$ | _                          |                            |
| Nœud : $v/a = 0,4857$ (0,4844)                  | Nœud : $v/a = 0,5000$      | Nœud : $v/a = 0,5000$      |
| $T_2 = 8.284 \text{ sec} (8.429 \text{ sec})$   | _                          |                            |
| $T_2/T_1 = 0,5398 (0,5371)$                     | $T_2/T_1 = 0,5000$         | $T_2/T_1 = 0,5774$         |
| Nœuds : nord : $v/a = 0,1089$ (0,1147)          | Nœuds : $I : v/a = 0,2500$ | Nœuds : $I : v/a = 0,2113$ |
| sud : $v/a = 0,7231$ (0,7365)                   | II : $v/a = 0,7500$        | II : $v/a = 0,7887$        |
| $T_3 = 6.414 \text{ sec} (6.663 \text{ sec})$   | —                          | —                          |
| $T_3/T_1 = 0,4180 \ (0,4245)$                   | $T_3/T_1 = 0,3333$         | $T_3/T_1 = 0,4082$         |
| Nœuds: nord : $v/a = 0,0659$ (0,0661)           | Nœuds : $I : v/a = 0,1667$ | Nœuds : $I : v/a = 0,1127$ |
| centre : $v/a = 0,3981$ (0,4049)                | II : $v/a = 0,5000$        | II : $v/a = 0,5000$        |
| sud : $v/a = 0.8331$ (0.8424)                   | III : $v/a = 0,8333$       | III : $v/a = 0,8873$       |
|                                                 |                            |                            |

Le lac Tanganika s'écarte donc fortement des deux types de canaux réguliers envisagés, tant par les rapports des périodes des modes supérieurs à celle du fondamental, que par la distribution des amplitudes et des nœuds (cf. fig. 20). Il faut cependant remarquer que la fonction propre du fondamental,  $u_1(v)$ , ne s'écarte pas notablement d'une sinusoïde; cette propriété sera mise à profit pour le calcul du fondamental par une autre méthode (cf. § 5).

### § 3. CALCUL DES SEICHES PAR LA MÉTHODE VARIATIONNELLE DE W. RITZ-KHIDAKA.

N.B. — Les calculs numériques du présent paragraphe ont été effectués sur un lac non « rectifié ».

Prenons des fonctions d'essai dont les dérivées soient orthogonales afin d'obtenir un déterminant-équation aux valeurs propres séculaire. Soit

$$\begin{aligned} \psi_1(v) &= \sin \frac{\pi v}{a} \, (^{s_7}) & \text{d'où} \quad \psi_4' &= \frac{\pi}{a} \cos \frac{\pi v}{a} \, ; \\ \psi_2(v) &= \sin \frac{2\pi v}{a} & \psi_2' &= \frac{2\pi}{a} \cos \frac{2\pi v}{a} \, ; \\ \psi_3(v) &= \sin \frac{3\pi v}{a} & \psi_3' &= \frac{3\pi}{a} \cos \frac{3\pi v}{a} \, . \end{aligned}$$

L'intégrale à minimer est

$$\mathbf{I} = \int_{0}^{a} \left[ u^{\prime 2} - \frac{\lambda u^{2}}{\sigma(v)} \right] dv \qquad \text{où} \qquad u = \sum_{i=1}^{3} \mathbf{A}_{i} \psi_{i}(v)$$

 $(A_i = constantes à déterminer).$ 

Les conditions de minimum s'écrivent

$$\frac{\partial \mathbf{I}}{\partial \mathbf{A}_i} = 0 \qquad (i = 1, 2, 3),$$

c'est-à-dire :

$$\int_{0}^{a} \left[ (A_{1} \psi_{1}' + A_{2} \psi_{2}' + A_{3} \psi_{3}') \cdot \psi_{i}' - \frac{\lambda}{\sigma(v)} (A_{1} \psi_{1} + A_{2} \psi_{2} + A_{3} \psi_{3}) \cdot \psi_{i} \right] dv = 0 \quad (i = 1, 2, 3).$$

Posons, pour abréger,

$$\int_0^a \psi_i'^2 dv = [i, i]', \quad \text{et} \quad \int_0^a \frac{\psi_i \psi_j}{\sigma(v)} dv = (i, j).$$

La condition de compatibilité de ces trois équations s'écrit alors, compte tenu de l'orthogonalité des  $\psi_i$  :

$$\begin{vmatrix} [1,1]' - \lambda (1,1) & -\lambda (1,2) & -\lambda (1,3) \\ -\lambda (2,1) & [2,2]' - \lambda (2,2) & -\lambda (2,3) \\ -\lambda (3,1) & -\lambda (3,2) & [3,3]' - \lambda (3,3) \end{vmatrix} = 0.$$

Les intégrales [i, i]' se calculent directement; on a :

$$[1,1]' = \frac{\pi^2}{2a};$$
  $[2,2]' = \frac{4\pi^2}{2a};$   $[3,3]' = \frac{9\pi^2}{2a}.$ 

Quant aux intégrales (i, j), elles doivent être tabulées. On trouve ainsi :

| $(1,1) = 88,4979 \times 10^{-6} \mathrm{cm}^{-1};$  | $(1,2) = 5,3853 \times 10^{-6} \mathrm{cm}^{-1};$  |
|-----------------------------------------------------|----------------------------------------------------|
| $(2,2) = 83,8396 \times 10^{-6} \mathrm{cm}^{-1};$  | $(2,3) = -2,0172 \times 10^{-6} \mathrm{cm^{-1}};$ |
| $(3,3) = 111,5713 \times 10^{-6} \mathrm{cm}^{-1};$ | $(3,1) = -4,5401 \times 10^{-6} \text{ cm}^{-1}.$  |

<sup>(\*7)</sup> Afin de simplifier les écritures, le facteur ayant les dimensions physiques (L<sup>3</sup>) de  $\psi_i(v)$  (volume balayé) est sous-entendu.

L'équation aux valeurs propres devient ainsi :

c'est-à-dire, après simplification par 10<sup>-8</sup> cm<sup>-3</sup> et toutes réductions faites :

 $\begin{array}{l} - 822.592,\! 4 \cdot \lambda^3 + 174.086,\! 36 \times 10^{-8} \, \mathrm{cm}^{-1} \cdot \lambda^2 - 10.003,\! 97 \times 10^{-16} \, \mathrm{cm}^{-2} \cdot \lambda \\ + 123,\! 978 \times 10^{-24} \, \mathrm{cm}^{-3} = 0. \end{array}$ 

Les racines de cette équation sont :

$$\begin{split} \lambda_{i} &= 1,7038 \times 10^{-i0} \, \mathrm{cm^{-1}}; \\ \lambda_{2} &= 7,2385 \times 10^{-i0} \, \mathrm{cm^{-1}}; \\ \lambda_{3} &= 12,2209 \times 10^{-i0} \, \mathrm{cm^{-1}}. \end{split}$$

On en tire :

 $\begin{array}{ll} T_4 = 15.392 \; {\rm sec.} = 4 \; {\rm h.} \; 16 \; {\rm min.} \; 32 \; {\rm sec.} \\ T_2 = \; 7.468 \; {\rm sec.} = 2 \; {\rm h.} \; \; 4 \; {\rm min.} \; 28 \; {\rm sec.} \\ T_3 = \; 5.747 \; {\rm soc.} = 1 \; {\rm h.} \; 35 \; {\rm min.} \; 47 \; {\rm sec.} \end{array}$ 

On voit que les résultats fournis par la méthode de RITZ-HIDAKA sont fort médiocres pour le second et le troisième mode normal; seule la période du fondamental est obtenue avec une précision satisfaisante.

Reste à calculer les constantes  $A_i$ .

En introduisant les valeurs propres  $\lambda_1$ ,  $\lambda_2$ ,  $\lambda_3$  dans les équations et en les résolvant par rapport à A<sub>1</sub>, A<sub>2</sub>, A<sub>3</sub>, on trouve les trois systèmes de valeurs suivants :

Mode fondamental :

$$\frac{A_2}{A_1} = 0,01994, \quad \frac{A_3}{A_1} = -0,0061, \quad d'où \quad u_1 = \sin\frac{\pi v}{a} + 0,01994 \sin\frac{2\pi v}{a} - 0,0061 \sin\frac{3\pi v}{a}.$$

Deuxième mode :

$$\frac{A_{4}}{A_{2}} = -0.0794, \ \frac{A_{3}}{A_{2}} = -0.0217, \ \text{d'où} \ u_{2} = -0.0794 \sin \frac{\pi v}{a} + \sin \frac{2\pi v}{a} - 0.0217 \sin \frac{3\pi v}{a}.$$

Troisième mode :

$$\frac{A_4}{A_3} = 0,0559, \ \frac{A_2}{A_3} = 0,0526, \ \text{d'où} \ u_3 = 0,0559 \ \sin\frac{\pi v}{a} + 0,0526 \sin\frac{2\pi v}{a} + \sin\frac{3\pi v}{a}.$$

Etant donné le but des présents calculs (montrer la grande supériorité de la méthode de DEFANT sur celle de RITZ-HIDAKA), on n'a pas cru devoir vérifier l'orthogonalité des trois fonctions  $u_1$ ,  $u_2$ ,  $u_3$  données ici, les calculs étant démesurément longs, puisqu'il s'agit d'une orthogonalité « généralisée » (cf. pp. 29-30).

Le fondamental et le second mode sont représentés de manière satisfaisante par les fonctions  $u_1$  et  $u_2$ .

Recherche des nœuds.

Mode fondamental : L'équation  $\frac{du_1}{dv} = 0$  s'écrit  $\frac{\pi}{a} \cos \frac{\pi v}{a} + 0.01994 \cdot \frac{2\pi}{a} \cos \frac{2\pi v}{a} - 0.0061 \cdot \frac{3\pi}{a} \cos \frac{3\pi v}{a} = 0$ ,

c'est-à-dire, en simplifiant par  $\pi/a$  et en exprimant  $\cos(2\pi v/a)$  et  $\cos(3\pi v/a)$  en fonction de  $\cos(\pi v/a)$  (que l'on écrira z pour la simplicité) :

 $-0,0732 \ z^3 + 0,07976 \ z^2 + 1,0549 \ z - 0,03988 = 0.$ 

Cette équation possède une racine très voisine de 0,04; les deux autres sont situées en dehors de l'intervalle (--1, +1). Le nœud du fondamental se trouve être « très voisin » du milieu du lac, en effet : z = 0,04 donne  $\pi v/a \simeq 1,536$ radian, c'est-à-dire  $v \simeq 0,489$  a, résultat en très bon accord avec celui obtenu par la méthode de DEFANT (v=0,4844 a), comme le montre la planche III.

Deuxième mode : L'équation  $\frac{du_2}{dv} = 0$  s'écrit de même : -0,2604  $z^3 + 4z^2 + 0,1159$  z - 2 = 0,

dont les deux racines situées dans l'intervalle (-1, +1) sont z = 0,709 et z = -0,709. On en tire v/a = 0,2484 et v/a = 0,7516, pour les nœuds nord et sud respectivement. Seul le second résultat est comparable à celui trouvé par la méthode de DEFANT (nœud nord : v/a = 0,1147; nœud sud : v/a = 0,7365), cf. planche III.

Troisième mode : L'équation  $\frac{d u_3}{d v} = 0$  s'écrit :

 $4z^{3} + 0,2104z^{2} - 2,9441z - 0,1052 = 0,$ 

et admet pour racines  $z \simeq 0.85$ ,  $z \simeq -0.85$  et  $z \simeq -0.036$ .

On en tire v/a = 0,1792 (nœud nord), v/a = 0,4883 (nœud central), v/a = 0,8208 (nœud sud), alors que la méthode DEFANT avait donné respectivement 0,0661, 0,4049, 0,8424. Le désaccord est à nouveau illustré par la planche III.

On voit donc que, tant pour les périodes que pour les fonctions propres et pour la position des nœuds, les résultats auxquels on aboutit par la méthode variationnelle de RITZ-HIDAKA ne sont satisfaisants que pour le mode fondamental et médiocres pour les modes supérieurs.

Les résultats publiés par P. CALOI et ses élèves dans les « Annali di Geofisica » (cf. pp. 88 sqq) et relatifs aux seiches des lacs italiens confirment invariablement la chose.

## **§ 4. CALCUL DE LA PÉRIODE DU MODE FONDAMENTAL** PAR LA FORMULE DE DU BOYS.

On a, par cette formule  $T_1 = 2 \int_0^1 \frac{dx}{\sqrt{gh(x)}}$  (cf. p. 9), où h(x) désigne la profondeur mesurée sur le Talweg (et non une profondeur moyenne pour chaque section droite).

Des mesures effectuées sur la carte du lac fournissent la table suivante :

| Section<br>n <sup>o</sup> | <i>h</i> ( <i>x</i> ) | $\sqrt{h(x)}$<br>m <sup>1/2</sup> | $\frac{\Delta x}{\sqrt{h(x)}}$ m <sup>1/2</sup> | Section<br>n <sup>o</sup> | h(x)<br>m | $\frac{\sqrt{h(x)}}{m^{\frac{1}{2}}}$ | $\frac{\Delta x}{\sqrt{h(x)}}$ m <sup>1/2</sup> |
|---------------------------|-----------------------|-----------------------------------|-------------------------------------------------|---------------------------|-----------|---------------------------------------|-------------------------------------------------|
|                           |                       |                                   |                                                 |                           |           |                                       |                                                 |
| 1                         | 150                   | 12,2                              | 450,8                                           | 16                        | 650       | 25,5                                  | 372,5                                           |
| 2                         | 230                   | 15,1                              | 331,1                                           | 17                        | 850       | 29,2                                  | 308,2                                           |
| 3                         | 250                   | 15,8                              | 316,5                                           | 18                        | 900       | 30,0                                  | 316,7                                           |
| 4                         | 260                   | 16,1                              | 310,6                                           | 19                        | 1.000     | 31,6                                  | 316,0                                           |
| 5                         | 290                   | 17,0                              | 294,1                                           | 20                        | 1.100     | 33,2                                  | 301,2                                           |
| 6                         | 305                   | 17,5                              | 285,7                                           | 21                        | 1.250     | 35,4                                  | 367,2                                           |
| 7                         | 310                   | 17,6                              | 284,1                                           | 22                        | 1.250     | 35,4                                  | 282,5                                           |
| 8                         | 330                   | 18,2                              | 274,7                                           | 23                        | 1.310     | 36,2                                  | 317,7                                           |
| 9                         | 300                   | 17,3                              | 289,0                                           | 24                        | 1.310     | 36,2                                  | 317,7                                           |
| 10                        | 280                   | 16,7                              | 299,4                                           | 25                        | 1.250     | 35,4                                  | 353,1                                           |
| 11                        | 300                   | 17,3                              | 578,0                                           | 26                        | 1.250     | 35,4                                  | 324,9                                           |
| 12                        | 350                   | 18,7                              | 588,2                                           | 27                        | 1.250     | 35,4                                  | 282,5                                           |
| 13                        | 350                   | 18,7                              | 267,4                                           | 28                        | 1.220     | 34,9                                  | 272,2                                           |
| 14                        | 350                   | 18,7                              | 427,8                                           | 29                        | 1.200     | 34,6                                  | 289,0                                           |
| 15                        | 500                   | 22,4                              | 424,1                                           | 30                        | 1.175     | 34,3                                  | 277,0                                           |



#### PLANCHE III. — Lac Tanganika.

Seiches longitudinales globales. Positions de lignes nodales obtenues par les méthodes de DEFANT (D) et de HIDAKA (H). L'accord est en général médiocre, sauf pour l'uninœud ( $D_1$  et  $H_1$  coïncident pratiquement) et le binœud sud ( $H_2$  et  $D_2$  sont voisins). Remarquer en outre l'inexactitude du tracé des rives de la presqu'île d'Ubwari et de la baie de Burton (cf. fig. 19 et planche II).

#### DES OSCILLATIONS LIBRES (SEICHES)

| Section<br>n <sup>o</sup> | <i>h</i> ( <i>x</i> )<br>m | $\frac{\sqrt{h(x)}}{m^{\frac{1}{2}}}$ | $\frac{\Delta x}{\sqrt{h(x)}}$ m <sup>1/2</sup> | Section<br>n <sup>o</sup> | h(x)<br>m | $\sqrt{h(x)}$ m <sup>1/2</sup> | $\frac{\Delta x}{\sqrt{h(x)}}$ m <sup>1/2</sup> |
|---------------------------|----------------------------|---------------------------------------|-------------------------------------------------|---------------------------|-----------|--------------------------------|-------------------------------------------------|
|                           |                            |                                       |                                                 |                           |           | 1                              |                                                 |
| 31                        | 1 150                      | 33.9                                  | 295.0                                           | 61                        | 700       | 26.5                           | 358.5                                           |
| 32                        | 1,125                      | 33.5                                  | 119.4                                           | 62                        | 750       | 27.4                           | 328.5                                           |
| 33                        | 1.100                      | 33.2                                  | 135.5                                           | 63                        | 1.000     | 31.6                           | 316.0                                           |
| 34                        | 1.070                      | 32.7                                  | 137.6                                           | 64                        | 1.400     | 37.4                           | 267.4                                           |
| 35                        | 1.035                      | 32,2                                  | 124,2                                           | 65                        | 1.450     | 38,1                           | 262,5                                           |
| 36                        | 1.000                      | 31,6                                  | 237,3                                           | 66                        | 1.450     | 38,1                           | 262,5                                           |
| 37                        | 800                        | 28,3                                  | 265,0                                           | 67                        | 1.400     | 37,4                           | 267,4                                           |
| 38                        | 750                        | 27,4                                  | 182,5                                           | 68                        | 1.400     | 37,4                           | 267,4                                           |
| 39                        | 700                        | 26,5                                  | 188,7                                           | 69                        | 1.400     | 37,4                           | 267,4                                           |
| 40                        | 700                        | 26,5                                  | 56,6                                            | 70                        | 1.400     | 37,4                           | 254,0                                           |
| 41                        | 750                        | 27,4                                  | 127,7                                           | 71                        | 1.300     | 36,1                           | 277,0                                           |
| 42                        | 850                        | 29,2                                  | 171,2                                           | 72                        | 1.250     | 35,4                           | 268,4                                           |
| 43                        | 885                        | 29,7                                  | 168,4                                           | 73                        | 1.250     | 35,4                           | 282,5                                           |
| 44                        | 900                        | 30,0                                  | 166,7                                           | 74                        | 1.100     | 33,2                           | 301,2                                           |
| 45                        | 900                        | 30,0                                  | 183,3                                           | 75                        | 950       | 30,8                           | 324,7                                           |
| 46                        | 885                        | 29,7                                  | 168,4                                           | 76                        | 800       | 28,3                           | 353,4                                           |
| 47                        | 850                        | 29,2                                  | 171,2                                           | 77                        | 750       | 27,4                           | 365,0                                           |
| 48                        | 850                        | 29,2                                  | 239,7                                           | 78                        | 750       | 27,4                           | 182,5                                           |
| 49                        | 850                        | 29,2                                  | 239,7                                           | 79                        | 700       | 26,5                           | 188,7                                           |
| 50                        | 850                        | 29,2                                  | 342,5                                           | 80                        | 650       | 25,5                           | 215,7                                           |
| 51                        | 850                        | 29,2                                  | 325,4                                           | 81                        | 600       | 24,5                           | 204,1                                           |
| 52                        | 850                        | 29,2                                  | 171,2                                           | 82                        | 500       | 22,4                           | 223,2                                           |
| 53                        | 850                        | 29,2                                  | 171,2                                           | 83                        | 450       | 21,2                           | 235,8                                           |
| 54                        | 850                        | 29,2                                  | 171,2                                           | 84                        | 450       | 21,2                           | 235,8                                           |
| 55                        | 850                        | 29,2                                  | 188,4                                           | 85                        | 400       | 20,0                           | 250,0                                           |
| 56                        | 800                        | 28,3                                  | 176,7                                           | 86                        | 350       | 18,7                           | 267,4                                           |
| 57                        | 800                        | 28,3                                  | 194,3                                           | 87                        | 350       | 18,7                           | 534,7                                           |
| 58                        | 750                        | 27,4                                  | 182,5                                           | 88                        | 200       | 14,1                           | 709,2                                           |
| 59                        | 700                        | 26,5                                  | 358,5                                           | 89                        | 65        | 8,1                            | 925,9                                           |
| 60                        | 700                        | 26,5                                  | 358,5                                           |                           |           |                                |                                                 |

Le total des colonnes  $\Delta x/\sqrt{h(x)}$  est égal à 25.335,2 m<sup>42</sup>; multiplions par  $2/\sqrt{g} = 0,639553$  m<sup>-42</sup> sec. : il vient : T<sub>1</sub>=16.203 sec., c'est-à-dire 4 h. 30 min. 3 sec., valeur qui excède de 5,6 % celle trouvée par la méthode de DEFANT. Ce résultat est satisfaisant, étant donné que l'estimation de h(x) sur le Talweg est souvent malaisée sur une carte qui ne donne que les courbes isobathes et que les dernières sections (à l'extrémité sud du lac), très peu profondes, et dont l'influence sur la période d'oscillation fondamentale est par suite faible, voient ici leur rôle exagéré (cf. les valeurs de  $\Delta x/\sqrt{h(x)}$  pour les sections 87 à 89!); l'erreur (c'est-à-dire l'écart par rapport au résultat trouvé par la méthode de DEFANT, considéré comme « exact ») est précisément de l'ordre de 1.500 m<sup>4/2</sup> sur la somme des  $\Delta x/\sqrt{h(x)}$ .

Remarque. — Il semblerait à première vue qu'on pourrait remplacer la

formule de Du Boys par la formule

$$\mathrm{T}_{4}=2\int_{0}^{a}\frac{dv}{\sqrt{g\sigma(v)}},$$

obtenue en multipliant numérateur et dénominateur dans la formule de Du Boys par b(x) : en effet

$$v(x) = \int_{0}^{x} b(x) dx$$
,  $S(x) = b(x) \cdot h(x)$ ,  $S(x) \cdot b(x) = \sigma(v)$ .

Mais cela revient à prendre pour h(x) une profondeur moyenne, et non une profondeur mesurée sur le Talweg, puisque l'égalité S(x) = b(x).h(x) n'a lieu que si h(x) désigne une profondeur moyenne pour la section droite (cf. p. 9).

A titre de vérification, on a fait le calcul et l'on a trouvé :

 $\sum \frac{\Delta v}{\sqrt{\sigma(v)}} = 29.415,77 \text{ m}^{\frac{1}{2}} \qquad \text{d'oû} \qquad T_4 = 18.812 \text{ sec.} = 5 \text{ h. } 13 \text{ min. } 32 \text{ sec.},$ 

soit une valeur qui excède de 22,6 % celle trouvée par la méthode de DEFANT; un tel résultat est évidemment inacceptable.

## § 5. CALCUL DE LA PÉRIODE DU MODE FONDAMENTAL PAR LA MÉTHODE DE L'ÉQUATION INTÉGRALE DE FREDHOLM (88).

On a montré comment l'équation de CHRYSTAL

$$\frac{d^2u}{dv^2} + \frac{\lambda u}{\sigma(v)} = 0, \qquad (I.10)$$

avec ses conditions-frontière u(0) = u(a) = 0, peut se transformer en une équation intégrale de Fredholm

$$u(v) + \lambda \int_{0}^{a} \frac{u(z) \operatorname{K}(v,z)}{\sigma(z)} dz = 0, \qquad (\text{II.7})$$

et comment  $\lambda$  s'obtient par itération, à partir d'une fonction d'essai  $u_{(1)}(v)$ , les valeurs successives  $\lambda'$ ,  $\lambda''$  etc., ainsi trouvées convergeant vers la valeur propre cherchée.

(<sup>88</sup>) Pour l'exposé de cette méthode, cf. pp. 77 sqq.

Prenons comme valeur d'essai  $u_{(1)}(v) = \sin (\pi v/a)$  (le facteur donnant à  $u_{(1)}(v)$  les dimensions d'un volume étant à nouveau sous-entendu). La fonction de GREEN G (v, z) de l'équation de CHRYSTAL est, compte tenu des conditions-frontière :

$$\mathrm{G}\left(v,z
ight)=rac{v-a}{a}\cdot z \qquad \mathrm{pour} \ \ z\leq v,$$
 $\mathrm{G}\left(v,z
ight)=rac{z-a}{a}\cdot v \qquad \mathrm{pour} \ \ z\geq v \ (^{\mathrm{89}}).$ 

Prenons comme valeur fixe de v,  $v_0 = a/2$ ; le noyau K(v, z) de l'équation intégrale prend ainsi la forme très simple

$$\begin{split} & \operatorname{K}\left(v_{0}\,z\right) = -\frac{1}{2}\,z \qquad \quad \operatorname{pour} \ z \leq \frac{a}{2}, \\ & \operatorname{K}\left(v_{0}\,z\right) = -\frac{1}{2}\left(a-z\right) \qquad \operatorname{pour} \ z \geq \frac{a}{2}. \end{split}$$

Si l'on pose  $u_{(1)}(a/2) = 1$ , l'équation en  $\lambda$  devient :

$$1 = \lambda \int_0^{a/2} \frac{\frac{1}{2}z \sin \frac{\pi z}{a}}{\sigma(z)} dz + \lambda \int_{a/2}^a \frac{\frac{1}{2}(a-z) \sin \frac{\pi z}{a}}{\sigma(z)} dz.$$

Il suffit maintenant de tabuler les deux intégrales pour trouver une première valeur approchée de  $\lambda$ . On obtient :

| Section<br>n <sup>o</sup>                                                                          | $\frac{z}{\sigma(z)}$ 10 <sup>-6</sup> cm <sup>-1</sup>                                                                               | $\frac{\frac{1}{2}z \cdot \sin\frac{\pi z}{a}}{\sigma(z)} \Delta z$ 10 <sup>4</sup> cm                                                                                      | Section<br>n <sup>o</sup>                                                              | $\frac{z}{\sigma(z)}$                                                                                                               | $\frac{\frac{1}{2}z \cdot \sin\frac{\pi z}{a}}{\sigma(z)} \Delta z$ $10^4 \text{ cm}$                                                                                                                                  |
|----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $ \begin{array}{c} 1\\ 2\\ 3\\ 4\\ 5\\ 6\\ 7\\ 8\\ 9\\ 10\\ 11\\ 12\\ 13\\ 14\\ 15\\ \end{array} $ | 20,21<br>29,88<br>47,37<br>60,99<br>74,21<br>76,96<br>67,82<br>65,44<br>71,00<br>76,55<br>62,36<br>58,97<br>178,60<br>136,41<br>83,73 | $\begin{array}{c} 13,13\\ 46,25\\ 101,73\\ 174,12\\ 232,97\\ 282,67\\ 305,34\\ 373,08\\ 474,27\\ 638,76\\ 992,74\\ 1.742,16\\ 2.303,75\\ 2.594,02\\ 2.397,27\\ \end{array}$ | 16<br>17<br>18<br>19<br>20<br>21<br>22<br>23<br>24<br>25<br>26<br>27<br>28<br>29<br>30 | 55,40<br>35,08<br>28.03<br>18,19<br>14,32<br>14,89<br>15,76<br>16,90<br>21,39<br>18,71<br>20,05<br>24,18<br>36,51<br>54,75<br>47,69 | $\begin{array}{c} 1.673,26\\ 1.521,70\\ 2.058,26\\ 1.769,84\\ 2.004,86\\ \hline\\ 2.024,26\\ 2.425,24\\ 2.341,62\\ 3.095,44\\ 3.648,05\\ \hline\\ 4.055,54\\ 5.104,37\\ 7.460,31\\ 12.219,56\\ 9.612,48\\ \end{array}$ |

(89) Cf. COLLATZ, L., Eigenwertprobleme und ihre Numer. Behandlung, Chelsea, New-York, 1948, pp. 78, 83.

| Section<br>nº        | $\frac{z}{\sigma(z)}$ 10 <sup>-6</sup> cm <sup>-1</sup> | $\frac{\frac{1}{2}z\cdot\sin\frac{\pi z}{a}}{\sigma(z)}\Delta z$ | Section<br>nº     | $\frac{z}{\sigma(z)}$ 10 <sup>-6</sup> cm <sup>-1</sup> | $\frac{\frac{1}{2}z \cdot \sin\frac{\pi z}{a}}{\sigma(z)} \Delta z$ 10 <sup>4</sup> cm |
|----------------------|---------------------------------------------------------|------------------------------------------------------------------|-------------------|---------------------------------------------------------|----------------------------------------------------------------------------------------|
| 31                   | 64.03                                                   | 13.023.28                                                        | 41                | 79.61                                                   | 8,594,58                                                                               |
| 32                   | 76.70                                                   | 8.010.24                                                         | 42                | 86.46                                                   | 14.672.74                                                                              |
| 33                   | 75,25                                                   | 7.897,19                                                         | 43                | 125,15                                                  | 18.185,48                                                                              |
| 34                   | 54,97                                                   | 7.083,74                                                         | 44                | 140,53                                                  | 18.825,47                                                                              |
| 35                   | 51,53                                                   | 7.064,40                                                         | 45                | 159,45                                                  | 19.198,91                                                                              |
| 36                   | 57.79                                                   | 15.103.88                                                        | 46                | 173,66                                                  | 20.345,83                                                                              |
| 37                   | 67,83                                                   | 19.013,36                                                        | 47                | 190,49                                                  | 20.066,55                                                                              |
| 38                   | 77,07                                                   | 13.028,53                                                        | 48                | 179,76                                                  | 23.359,45                                                                              |
| 39                   | 93,71                                                   | 15.809,85                                                        | 48bis             | 121,24                                                  | 17.579,80                                                                              |
| 40                   | 108,67                                                  | 5.493,18                                                         |                   | (90)                                                    |                                                                                        |
| 37<br>38<br>39<br>40 | 67,83<br>77,07<br>93,71<br>108,67                       | 19.013,36<br>13.028,53<br>15.809,85<br>5.493,18                  | 47<br>48<br>48bis | 190,49<br>179,76<br>121,24<br>( <sup>90</sup> )         | 20.066,55<br>23.359,45<br>17.579,80                                                    |

| Section<br>n <sup>o</sup> | $\frac{a-z}{\sigma(z)}$ 10 <sup>-6</sup> cm <sup>-1</sup> | $\frac{\frac{1}{2} (a - z) \cdot \sin \frac{\pi z}{a}}{\sigma (z)} \Delta z$ 10 <sup>4</sup> cm | Section<br>n <sup>o</sup> | $\frac{a-z}{\sigma(z)}$ 10 <sup>-6</sup> cm <sup>-1</sup> | $\frac{\frac{1}{2}(a-z)\cdot\sin\frac{\pi z}{a}}{\sigma(z)}\Delta z$ 10 <sup>4</sup> cm |
|---------------------------|-----------------------------------------------------------|-------------------------------------------------------------------------------------------------|---------------------------|-----------------------------------------------------------|-----------------------------------------------------------------------------------------|
| 49                        | 120 51                                                    | 1 385 86                                                                                        | 70                        | 21.40                                                     | 2 979 95                                                                                |
| 50                        | 95.78                                                     | 22,957,32                                                                                       | 71                        | 21.35                                                     | 2.967.56                                                                                |
| 51                        | 93,28                                                     | 21.862.00                                                                                       | 72                        | 24.48                                                     | 3.020.63                                                                                |
| 52                        | 67,68                                                     | 9.031.05                                                                                        | 73                        | 22,92                                                     | 2.405.83                                                                                |
| 53                        | 56,50                                                     | 8.985.52                                                                                        |                           | ,,                                                        |                                                                                         |
|                           | ,                                                         | ,                                                                                               | 74                        | 31,99                                                     | 2.926.27                                                                                |
| 54                        | 52,20                                                     | 8.713.38                                                                                        | 75                        | 37,15                                                     | 2.997.33                                                                                |
| 55                        | 48.67                                                     | 8.678.60                                                                                        | 76                        | 33,39                                                     | 2.483,05                                                                                |
| 56                        | 51,70                                                     | 7.723,26                                                                                        | 77                        | 27,52                                                     | 1.760,18                                                                                |
| 57                        | 50,97                                                     | 7.040,22                                                                                        | 78                        | 22,06                                                     | 682,53                                                                                  |
| 58                        | 52,56                                                     | 6.427,74                                                                                        |                           | -                                                         | ,                                                                                       |
|                           |                                                           |                                                                                                 | 79                        | 20,86                                                     | 613,91                                                                                  |
| 59                        | 53,92                                                     | 13.763,49                                                                                       | 80                        | 15,82                                                     | 462,97                                                                                  |
| 60                        | 47,50                                                     | 14.018,79                                                                                       | 81                        | 20,10                                                     | 470,96                                                                                  |
| 61                        | 55,62                                                     | 15.251,75                                                                                       | 82                        | 21,93                                                     | 382,24                                                                                  |
| 62                        | 49,25                                                     | 12.522,78                                                                                       | 83                        | 21,72                                                     | 339,43                                                                                  |
| 63                        | 36,03                                                     | 8.636,51                                                                                        |                           |                                                           |                                                                                         |
|                           |                                                           |                                                                                                 | 84                        | 20,48                                                     | 266,43                                                                                  |
| 64                        | 31,66                                                     | 7.404,57                                                                                        | 85                        | 29,13                                                     | 294,60                                                                                  |
| 65                        | 35,06                                                     | 6.763,74                                                                                        | 86                        | 26,18                                                     | 220,56                                                                                  |
| 66                        | 34,04                                                     | 5.609,15                                                                                        | 87                        | 25,59                                                     | 228,32                                                                                  |
| 67                        | 30,18                                                     | 4.567,78                                                                                        | . 88                      | 18,84                                                     | 48,90                                                                                   |
| 68                        | 26,66                                                     | 4.074,90                                                                                        |                           |                                                           |                                                                                         |
|                           |                                                           |                                                                                                 | [89                       | ► 1                                                       | 0]                                                                                      |
| 69                        | 22,91                                                     | 3.227,34                                                                                        |                           |                                                           |                                                                                         |

La somme des deux intégrales est égale à 569.240,91  $\times$  10<sup>4</sup> cm.

<sup>(\*\*)</sup> La division 48*bis* est une division supplémentaire (où  $v = 15.713 \text{ km}^2$ ), qu'il était nécessaire d'introduire afin de pouvoir calculer les deux intégrales cherchées en tenant compte de leurs limites exactes; en effet, le point a/2 tombe entre la 48<sup>e</sup> et la 49<sup>e</sup> division (cf. p. 111).

On en tire  $\lambda_1 = 1,756725 \times 10^{-10}$  cm<sup>-1</sup>, d'où T<sub>1</sub> = 15.159 sec. = 4 h. 12 min. 39 sec. En comparant ces résultats à ceux trouvés par la méthode de DEFANT, on voit que l'écart sur la valeur propre  $\lambda_1$  est de 2,48 % seulement, et de --1,22 % sur la période T<sub>1</sub>.

Ce résultat est d'une précision extraordinaire, due vraisemblablement au fait que la fonction propre  $u_1(v)$  du mode fondamental se trouve (par hasard) être très peu différente d'une sinusoïde, comme semblait déjà le montrer la courbe obtenue par la méthode de DEFANT, et comme le confirme le résultat trouvé par le procédé RITZ-HIDAKA (cf. pp. 136-137). La chose vaut en tout cas la peine d'être examinée; à cet effet, on a dressé, dans les pages qui suivent, une table où sont données en regard l'une de l'autre les fonctions  $u_1(v)$  (méthode de DEFANT) et sin  $(\pi v/a)$ ; une courbe complète la comparaison.

On peut ainsi se rendre compte combien la fonction  $u_1(v)$  diffère peu d'une sinusoïde.

Pour les modes supérieurs, le procédé de l'équation intégrale de FREDHOLM ne semble guère pratique. Un essai a été fait pour le second mode, en prenant comme première fonction d'essai :  $u_2(v) = \sin (2\pi v/a)$ ; le résultat est très peu satisfaisant : l'erreur sur  $\lambda_2$  est de l'ordre de 50 %. On pouvait du reste plus ou moins s'y attendre, étant donné que la fonction d'essai utilisée devait être, à en juger par la courbe dressée à partir des résultats trouvés par la méthode de DEFANT, une approximation fort grossière. Des itérations répétées auraient sans doute permis d'améliorer ce résultat, mais la longueur démesurée des calculs que cela nécessite enlève à la méthode de son intérêt pratique.

Voici encore, pour finir, la table de comparaison annoncée pour les fonctions  $u_1(v)$  (méthode de DEFANT) et sin  $(\pi v/a)$ .

Afin de faire prendre à la première la valeur 1 au point v = a/2 = 15.713 km<sup>2</sup>, elle a été multipliée par 1,30668 × 10<sup>-11</sup> m<sup>-3</sup> (valeur tirée de la table des pages 114-115); la comparaison est ainsi grandement facilitée.

| km <sup>2</sup> | $\frac{\sin a}{a}$                                                                                                                                   | <i>u</i> <sub>1</sub> ( <i>v</i> )                                                                                                                                                                                                                                                                                       | No.                                                                                                                                                                  | v km <sup>2</sup>                                      | $\sin \frac{\pi v}{a}$                                                                                                                                                                                                                                                                                                       | $u_1(v)$                                               |
|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|
|                 |                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                          |                                                        | ,                                                                                                                                                                                                                                                                                                                            |                                                        |
| 114             | 0,01140                                                                                                                                              | 0,01490                                                                                                                                                                                                                                                                                                                  | 11                                                                                                                                                                                                       | 1.420                                                  | 0,1415                                                                                                                                                                                                                                                                                                                       | 0,1750                                                 |
| 242             | 0,02419                                                                                                                                              | 0,03154                                                                                                                                                                                                                                                                                                                  | 12                                                                                                                                                                                                       | 1.758                                                  | 0,1748                                                                                                                                                                                                                                                                                                                       | 0,2124                                                 |
| 361             | 0,03609                                                                                                                                              | 0,04692                                                                                                                                                                                                                                                                                                                  | 13                                                                                                                                                                                                       | 1.895                                                  | 0,1883                                                                                                                                                                                                                                                                                                                       | 0,2269                                                 |
| 480             | 0,04798                                                                                                                                              | 0,06216                                                                                                                                                                                                                                                                                                                  | 14                                                                                                                                                                                                       | 2.083                                                  | 0,2023                                                                                                                                                                                                                                                                                                                       | 0,2460                                                 |
| 587             | 0,05868                                                                                                                                              | 0,07569                                                                                                                                                                                                                                                                                                                  | 15                                                                                                                                                                                                       | 2.331                                                  | 0,2309                                                                                                                                                                                                                                                                                                                       | 0,2697                                                 |
| 693             | 0,0692                                                                                                                                               | 0,0889                                                                                                                                                                                                                                                                                                                   | 16                                                                                                                                                                                                       | 2.569                                                  | 0,2538                                                                                                                                                                                                                                                                                                                       | 0,2914                                                 |
| 805             | 0,0804                                                                                                                                               | 0,1027                                                                                                                                                                                                                                                                                                                   | 17                                                                                                                                                                                                       | 2.875                                                  | 0,2835                                                                                                                                                                                                                                                                                                                       | 0,3181                                                 |
| 928             | 0,0927                                                                                                                                               | 0,1176                                                                                                                                                                                                                                                                                                                   | 18                                                                                                                                                                                                       | 3.325                                                  | 0,3263                                                                                                                                                                                                                                                                                                                       | 0,3563                                                 |
| 1.055           | 0,1052                                                                                                                                               | 0,1327                                                                                                                                                                                                                                                                                                                   | 19                                                                                                                                                                                                       | 3.844                                                  | 0,3749                                                                                                                                                                                                                                                                                                                       | 0,3991                                                 |
| 1.195           | 0,1192                                                                                                                                               | 0,1491                                                                                                                                                                                                                                                                                                                   | 20                                                                                                                                                                                                       | 4.489                                                  | 0,4340                                                                                                                                                                                                                                                                                                                       | 0,4512                                                 |
| -               | km²           1114           242           361           480           587           693           805           928           1.055           1.195 | km²         .           114         0,01140           242         0,02419           361         0,03609           480         0,04798           587         0,05868           693         0,0692           805         0,0804           928         0,0927           1.055         0,1052           1.195         0,1192 | km²0,011400,01490 $242$ 0,024190,03154 $361$ 0,036090,04692 $480$ 0,047980,06216 $587$ 0,058680,07569 $693$ 0,06920,0889 $805$ 0,08040,1027 $928$ 0,09270,1176 $1.055$ 0,10520,1327 $1.195$ 0,11920,1491 | $\begin{array}{c c c c c c c c c c c c c c c c c c c $ | km²km²114 $0,01140$ $0,01490$ 11 $1.420$ 242 $0,02419$ $0,03154$ 12 $1.758$ 361 $0,03609$ $0,04692$ 13 $1.895$ 480 $0,04798$ $0,06216$ 14 $2.083$ 587 $0,05868$ $0,07569$ 15 $2.331$ 693 $0,0692$ $0,0889$ 16 $2.569$ 805 $0,0927$ $0,1176$ 18 $3.325$ 1.055 $0,1052$ $0,1327$ 19 $3.844$ 1.195 $0,1192$ $0,1491$ 20 $4.489$ | $\begin{array}{c c c c c c c c c c c c c c c c c c c $ |





Comparaison de la fonction propre du mode fondamental longitudinal  $u_1(v)$  (méthode de DEFANT) avec la fonction sin  $(\pi v/a)$ .

### DES OSCILLATIONS LIBRES (SEICHES)

| Section<br>n <sup>o</sup> | v<br>km² | $\sin \frac{\pi v}{a}$ | <i>u</i> <sub>1</sub> ( <i>v</i> ) | Section<br>n <sup>o</sup> | vkm <sup>2</sup> | $\sin \frac{\pi v}{a}$ | <i>u</i> <sub>1</sub> ( <i>v</i> ) |
|---------------------------|----------|------------------------|------------------------------------|---------------------------|------------------|------------------------|------------------------------------|
|                           |          |                        |                                    |                           |                  |                        |                                    |
| 21                        | 5.051    | 0,4838                 | 0,4959                             | 56                        | 18.293           | 0,9669                 | 0,9357                             |
| 22                        | 5.628    | 0,5334                 | 0,5407                             | 57                        | 18.581           | 0,9592                 | 0,9254                             |
| 23                        | 6.111    | 0,5736                 | 0,5775                             | 58                        | 18.838           | 0,9517                 | 0,9155                             |
| 24                        | 6.584    | 0,6119                 | 0,6101                             | 59                        | 19.385           | 0,9333                 | 0,8933                             |
| 25                        | 7.177    | 0,6576                 | 0,6557                             | 60                        | 20.035           | 0,9081                 | 0,8639                             |
|                           |          |                        |                                    |                           |                  |                        |                                    |
| 26                        | 7.755    | 0,6999                 | 0,6963                             | 61                        | 20.658           | 0,8803                 | 0,8330                             |
| 27                        | 8.326    | 0,7395                 | 0,7351                             | 62                        | 21.256           | 0,8504                 | 0,8006                             |
| 28                        | 8.854    | 0,7740                 | 0,7697                             | 63                        | 21.842           | 0,8181                 | 0,7667                             |
| 29                        | 9.363    | 0,8052                 | 0,8015                             | 64                        | 22.440           | 0,7822                 | 0,7302                             |
| 30                        | 9.847    | 0,8329                 | 0,8294                             | 65                        | 22.955           | 0,7492                 | 0,6975                             |
|                           |          |                        |                                    |                           |                  | -                      |                                    |
| 31                        | 10.321   | 0,8582                 | 0,8551                             | 66                        | 23.414           | 0,7180                 | 0,6672                             |
| 32                        | 10.561   | 0.8703                 | 0.8669                             | 67                        | 23.855           | 0.6864                 | 0,6372                             |
| 33                        | 10.799   | 0.8819                 | 0.8782                             | 68                        | 24.324           | 0.6518                 | 0.6043                             |
| 34                        | 11.087   | 0.8949                 | 0.8912                             | 69                        | 24.781           | 0.6165                 | 0.5714                             |
| 35                        | 11.389   | 0.9079                 | 0.9047                             | 70                        | 25,263           | 0.5778                 | 0.5359                             |
| 00                        |          | .,                     | -,                                 |                           | ,                | •,•••                  | .,                                 |
| 36                        | 11.951   | 0.9301                 | 0.9275                             | 71                        | 25.783           | 0.5346                 | 0,4968                             |
| 37                        | 12.541   | 0.9502                 | 0.9496                             | 72                        | 26.285           | 0,4916                 | 0.4581                             |
| 38                        | 12.893   | 0.9605                 | 0.9612                             | 73                        | 26.751           | 0.4505                 | 0.4215                             |
| 39                        | 13 241   | 0,9696                 | 0.9714                             | 74                        | 27,197           | 0,4102                 | 0.3855                             |
| 40                        | 13 345   | 0,9721                 | 0 9740                             | . 75                      | 27 633           | 0,3701                 | 0 3495                             |
| 40                        | 10.010   | 0,0121                 | 0,0110                             |                           | ~1.000           | 0,0101                 | 0,0100                             |
| 41                        | 13.566   | 0.9770                 | 0.9793                             | 76                        | 28.087           | 0.3276                 | 0.3108                             |
| 42                        | 13.911   | 0.9838                 | 0.9867                             | 77                        | 28,536           | 0.2849                 | 0.2716                             |
| 43                        | 14,205   | 0.9885                 | 0.9920                             | 78                        | 28.772           | 0.2622                 | 0.2504                             |
| 44                        | 14 475   | 0,9923                 | 0.9957                             | 79                        | 29.019           | 0.2383                 | 0.2281                             |
| 45                        | 14.717   | 0.9951                 | 0.9982                             | 80                        | 29.296           | 0.2113                 | 0.2029                             |
| 10                        |          | 0,0001                 |                                    |                           | ~~~~~            | 0,2110                 | 0,2020                             |
| 46                        | 14.952   | 0.9971                 | 0.9996                             | 81                        | 29.547           | 0.1867                 | 0.1798                             |
| 47                        | 15 163   | 0,9985                 | 0,9999                             | 82                        | 29 757           | 0,1660                 | 0,1603                             |
| 48                        | 15 423   | 0,9996                 | 0,9992                             | 83                        | 29 973           | 0,1000                 | 0,1402                             |
| 40                        | 15 736   | 1 0000                 | 0,9967                             | 84                        | 30 183           | 0.1239                 | 0,1203                             |
| 40<br>50                  | 16 216   | 0.9987                 | 0,9906                             | 85                        | 30.376           | 0,1200                 | 0,1200                             |
| 00                        | 10.210   | 0,0001                 | 0,0000                             |                           | 00.010           | 0,1010                 | 0,10.0                             |
| 51                        | 16.687   | 0.9952                 | 0.9819                             | 86                        | 30.574           | 0.0851                 | 0.0830                             |
| 52                        | 16 956   | 0,9991                 | 0,9755                             | 87                        | 30 946           | 0,04797                | 0,0000                             |
| 52                        | 17 972   | 0,0070                 | 0,9155                             | 82                        | 31 964           | 0.04648                | 0,04000                            |
| 54                        | 17 619   | 0,0010                 | 0,0071                             | 80                        | 31 496           | 0,01040                | _0 00047                           |
| 04<br>55                  | 17.010   | 0,9019                 | 0,9575                             | 09                        | 51.420           | 0,0000                 | -0,00047                           |
| 55                        | 17,984   | 0,9744                 | 0,9400                             |                           |                  |                        |                                    |
|                           |          |                        |                                    |                           |                  |                        |                                    |

## § 6. PREMIERS RÉSULTATS EXPÉRIMENTAUX.

Au moment de l'impression de ce travail (octobre 1955), des limnogrammes enregistrés à la station d'Usumbura pendant l'été 1955 nous ont été communiqués par M. CH. MANNEBACK; ces enregistrements, quoique fort imparfaits et partiels, semblent révéler nettement des périodes d'oscillation voisines de 4 h. 30 min., 2 h. 15 min. et 1 h. 40 min.; il pourrait s'agir là des trois premiers

modes globaux calculés dans ce chapitre IV. Il faudra toutefois attendre la publication de limnogrammes enregistrés sur tout le pourtour du lac avant de pouvoir conclure à un accord entre la théorie et l'expérience.

### CHAPITRE V.

## LES SEICHES LONGITUDINALES PARTIELLES DU LAC TANGANIKA.

Outre les seiches longitudinales, il faut s'attendre à ce que le lac Tanganika, à cause de sa longueur et de la disposition même de ses masses d'eau, soit le siège de seiches longitudinales partielles, affectant de manière particulière tel ou tel de ses « bassins ».

L'examen de la courbe normale du lac montre que celui-ci peut être considéré comme composé de deux grands bassins principaux, de superficies sensiblement égales : le bassin nord (15.535 km<sup>2</sup>) et le bassin sud (16.263 km<sup>2</sup>), reliés entre eux par l'étranglement de Lubaya-Lubugwe.

Dans le bassin nord, on peut encore distinguer :

le « golfe » d'Uvira-Rumonge, qui constitue l'extrémité nord du lac (au nord de la ligne Rumonge-Cap Banza);

la baie de Burton, qui prolonge vers le sud-ouest le « golfe » précédent;

le reste du bassin nord (depuis Rumonge jusqu'à l'étranglement Lubaya-Lubugwe). Il est vrai que la courbe normale y présente encore un minimum accusé autour de la ligne Kabimba-Karago, mais il paraît difficile d'y voir un véritable étranglement ou même un seuil.

Le bassin sud, au contraire, forme un seul tout, malgré quelques minima peu marqués de la courbe normale, à hauteur de Karema, Utinta et Moliro. Il est intéressant de remarquer que si l'on considère le lac comme une seule masse d'eau (comme on l'a fait au chapitre précédent) oscillant dans son entièreté, le nœud du mode fondamental se trouve précisément au voisinage de l'étranglement Lubaya-Lubugwe.

L'examen de la courbe d'impédance au voisinage des deux principaux étranglements (celui de Rumonge et celui de Lubaya-Lubugwe), pour chacun des trois modes normaux étudiés dans le chapitre précédent, va permettre de décider dans quelle mesure la division en bassins proposée ci-dessus correspond à une réalité physique.

Une fois cette question tranchée, chacun des bassins partiels sera éventuellement étudié séparément, en étant considéré comme ouvert, à une seule ou aux deux extrémités, suivant la place qu'il occupe dans le complexe du Tanganika. La disposition particulière des masses d'eau, toujours très considérables et étalées en longueur, ainsi que l'étroitesse (relative !) des étranglements ou seuils par lesquels les bassins communiquent entre eux, permettra sans doute de traiter ces derniers comme s'ils débouchaient sur des masses d'eau infinies;